Please use this identifier to cite or link to this item:
This item is licensed with a CreativeCommons licence by/3.0
Publisher DOI: 10.1155/JAM.2005.37
Title: Locating real eigenvalues of a spectral problem in fluid-solid type structures
Language: English
Authors: Voß, Heinrich 
Keywords: nonlinear eigenvalue problem;eigenvalue bounds;minmax principle;fluid structure interaction
Issue Date: 1-Jan-2005
Publisher: Hindawi Publishing Corporation
Source: Journal of Applied Mathematics, vol. 2005, no. 1, pp. 37-48, 2005
Journal or Series Name: Journal of Applied Mathematics 
Abstract (english): Exploiting minmax characterizations for nonlinear and nonoverdamped eigenvalue problems, we prove the existence of a countable set of eigenvalues converging to ∞ and inclusion theorems for a rational spectral problem governing mechanical vibrations of a tube bundle immersed in an incompressible viscous fluid. The paper demonstrates that the variational characterization of eigenvalues is a powerful tool for studying nonoverdamped eigenproblems, and that the appropriate enumeration of the eigenvalues is of predominant importance, whereas the natural ordering of the eigenvalues may yield false conclusions.
DOI: 10.15480/882.1555
ISSN: 1687-0042
Institute: Mathematik E-10 
Type: (wissenschaftlicher) Artikel
Appears in Collections:Publications (tub.dok)

Files in This Item:
File Description SizeFormat
JAM.2005.751256.pdf562,65 kBAdobe PDFThumbnail
Show full item record

Page view(s)

Last Week
Last month
checked on Apr 23, 2019


checked on Apr 23, 2019

Google ScholarTM



This item is licensed under a Creative Commons License Creative Commons