Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.1555
This item is licensed with a CreativeCommons licence by/3.0
DC FieldValueLanguage
dc.contributor.authorVoß, Heinrich-
dc.date.accessioned2018-02-27T13:40:27Z-
dc.date.available2018-02-27T13:40:27Z-
dc.date.issued2005-01-01-
dc.identifier.citationJournal of Applied Mathematics, vol. 2005, no. 1, pp. 37-48, 2005de_DE
dc.identifier.issn1687-0042de_DE
dc.identifier.urihttps://doi.org/10.1155/JAM.2005.37-
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/1558-
dc.description.abstractExploiting minmax characterizations for nonlinear and nonoverdamped eigenvalue problems, we prove the existence of a countable set of eigenvalues converging to ∞ and inclusion theorems for a rational spectral problem governing mechanical vibrations of a tube bundle immersed in an incompressible viscous fluid. The paper demonstrates that the variational characterization of eigenvalues is a powerful tool for studying nonoverdamped eigenproblems, and that the appropriate enumeration of the eigenvalues is of predominant importance, whereas the natural ordering of the eigenvalues may yield false conclusions.-
dc.description.abstractExploiting minmax characterizations for nonlinear and nonoverdamped eigenvalue problems, we prove the existence of a countable set of eigenvalues converging to ∞ and inclusion theorems for a rational spectral problem governing mechanical vibrations of a tube bundle immersed in an incompressible viscous fluid. The paper demonstrates that the variational characterization of eigenvalues is a powerful tool for studying nonoverdamped eigenproblems, and that the appropriate enumeration of the eigenvalues is of predominant importance, whereas the natural ordering of the eigenvalues may yield false conclusions.en
dc.language.isoende_DE
dc.publisherHindawi Publishing Corporationde_DE
dc.relation.ispartofJournal of Applied Mathematicsde_DE
dc.rightsCC BY 3.0de_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.subjectnonlinear eigenvalue problemde_DE
dc.subjecteigenvalue boundsde_DE
dc.subjectminmax principlede_DE
dc.subjectfluid structure interactionde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleLocating real eigenvalues of a spectral problem in fluid-solid type structuresde_DE
dc.typeArticlede_DE
dc.date.updated2018-02-26T12:42:22Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066en-
dc.rights.holderCopyright © 2005 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.-
dc.identifier.urnurn:nbn:de:gbv:830-882.18754-
dc.identifier.doi10.15480/882.1555-
dc.type.diniarticle-
dc.subject.ddccode510-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.18754de_DE
tuhh.oai.showtrue-
dc.identifier.hdl11420/1558-
tuhh.abstract.englishExploiting minmax characterizations for nonlinear and nonoverdamped eigenvalue problems, we prove the existence of a countable set of eigenvalues converging to ∞ and inclusion theorems for a rational spectral problem governing mechanical vibrations of a tube bundle immersed in an incompressible viscous fluid. The paper demonstrates that the variational characterization of eigenvalues is a powerful tool for studying nonoverdamped eigenproblems, and that the appropriate enumeration of the eigenvalues is of predominant importance, whereas the natural ordering of the eigenvalues may yield false conclusions.de_DE
tuhh.publisher.doi10.1155/JAM.2005.37-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.1555-
tuhh.type.opus(wissenschaftlicher) Artikelde
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematik E-10de_DE
tuhh.gvk.hasppnfalse-
tuhh.hasurnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.rights.ccbyde_DE
dc.rights.ccversion3.0de_DE
dc.type.casraiJournal Articleen
tuhh.container.issueIssue 1de_DE
tuhh.container.volumeVolume 2005 (2005)de_DE
tuhh.container.startpage37de_DE
tuhh.container.endpage48de_DE
dc.rights.nationallicensefalsede_DE
item.fulltextWith Fulltext-
item.creatorOrcidVoß, Heinrich-
item.creatorGNDVoß, Heinrich-
item.grantfulltextopen-
crisitem.author.orcid0000-0003-2394-375X-
Appears in Collections:Publications (tub.dok)
Files in This Item:
File Description SizeFormat
JAM.2005.751256.pdf562,65 kBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

85
Last Week
0
Last month
0
checked on Apr 20, 2019

Download(s)

21
checked on Apr 20, 2019

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons