Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.153
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorVoß, Heinrich-
dc.date.accessioned2006-02-24T11:03:29Zde_DE
dc.date.available2006-02-24T11:03:29Zde_DE
dc.date.issued2002-08-
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/155-
dc.description.abstractIn this paper we apply a minmax characterization for nonoverdamped nonlinear eigenvalue problems to a rational eigenproblem governing mechanical vibrations of a tube bundle immersed in an inviscid compressible fluid. This eigenproblem is nonstandard in two respects: it depends rationally on the eigenparameter, and it involves non-local boundary conditions. Comparison results are proved comparing the eigenvalues of the rational problem to those of certain linear problems suggesting a way how to construct ansatz vectors for an efficient projection method.en
dc.language.isoende_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectnonlinear eigenvalue problemde_DE
dc.subjectmaxmin principlede_DE
dc.subjectfluid structure interactionde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleA rational spectral problem in fluid-solid vibrationde_DE
dc.typeWorking Paperde_DE
dc.date.updated2006-02-24T11:03:30Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-2153de_DE
dc.identifier.doi10.15480/882.153-
dc.type.diniworkingPaper-
dc.subject.ddccode510-
dc.subject.msc49K05:Free problems in one independent variableen
dc.subject.msccode49K05-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-2153de_DE
tuhh.publikation.typworkingPaperde_DE
tuhh.opus.id215de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/155-
tuhh.abstract.englishIn this paper we apply a minmax characterization for nonoverdamped nonlinear eigenvalue problems to a rational eigenproblem governing mechanical vibrations of a tube bundle immersed in an inviscid compressible fluid. This eigenproblem is nonstandard in two respects: it depends rationally on the eigenparameter, and it involves non-local boundary conditions. Comparison results are proved comparing the eigenvalues of the rational problem to those of certain linear problems suggesting a way how to construct ansatz vectors for an efficient projection method.de_DE
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.153-
tuhh.type.opusResearchPaper-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id17de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverworkingPaper-
dc.identifier.oclc930768082-
dc.type.casraiWorking Paper-
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber50de_DE
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeWorking Paper-
item.seriesrefPreprints des Institutes für Mathematik;50-
item.cerifentitytypePublications-
item.creatorOrcidVoß, Heinrich-
item.fulltextWith Fulltext-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.creatorGNDVoß, Heinrich-
item.openairecristypehttp://purl.org/coar/resource_type/c_8042-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-2394-375X-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
rep50.pdf247,33 kBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

242
Last Week
0
Last month
0
checked on Oct 19, 2020

Download(s)

79
checked on Oct 19, 2020

Google ScholarTM

Check

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.