Please use this identifier to cite or link to this item:
https://doi.org/10.15480/882.153

DC Field | Value | Language |
---|---|---|
dc.contributor.author | Voß, Heinrich | - |
dc.date.accessioned | 2006-02-24T11:03:29Z | de_DE |
dc.date.available | 2006-02-24T11:03:29Z | de_DE |
dc.date.issued | 2002-08 | - |
dc.identifier.uri | http://tubdok.tub.tuhh.de/handle/11420/155 | - |
dc.description.abstract | In this paper we apply a minmax characterization for nonoverdamped nonlinear eigenvalue problems to a rational eigenproblem governing mechanical vibrations of a tube bundle immersed in an inviscid compressible fluid. This eigenproblem is nonstandard in two respects: it depends rationally on the eigenparameter, and it involves non-local boundary conditions. Comparison results are proved comparing the eigenvalues of the rational problem to those of certain linear problems suggesting a way how to construct ansatz vectors for an efficient projection method. | en |
dc.language.iso | en | de_DE |
dc.rights | info:eu-repo/semantics/openAccess | - |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | nonlinear eigenvalue problem | de_DE |
dc.subject | maxmin principle | de_DE |
dc.subject | fluid structure interaction | de_DE |
dc.subject.ddc | 510: Mathematik | de_DE |
dc.title | A rational spectral problem in fluid-solid vibration | de_DE |
dc.type | Working Paper | de_DE |
dc.date.updated | 2006-02-24T11:03:30Z | de_DE |
dc.identifier.urn | urn:nbn:de:gbv:830-opus-2153 | de_DE |
dc.identifier.doi | 10.15480/882.153 | - |
dc.type.dini | workingPaper | - |
dc.subject.ddccode | 510 | - |
dc.subject.msc | 49K05:Free problems in one independent variable | en |
dc.subject.msccode | 49K05 | - |
dcterms.DCMIType | Text | - |
tuhh.identifier.urn | urn:nbn:de:gbv:830-opus-2153 | de_DE |
tuhh.publikation.typ | workingPaper | de_DE |
tuhh.opus.id | 215 | de_DE |
tuhh.oai.show | true | de_DE |
dc.identifier.hdl | 11420/155 | - |
tuhh.abstract.english | In this paper we apply a minmax characterization for nonoverdamped nonlinear eigenvalue problems to a rational eigenproblem governing mechanical vibrations of a tube bundle immersed in an inviscid compressible fluid. This eigenproblem is nonstandard in two respects: it depends rationally on the eigenparameter, and it involves non-local boundary conditions. Comparison results are proved comparing the eigenvalues of the rational problem to those of certain linear problems suggesting a way how to construct ansatz vectors for an efficient projection method. | de_DE |
tuhh.publication.institute | Mathematik E-10 | de_DE |
tuhh.identifier.doi | 10.15480/882.153 | - |
tuhh.type.opus | ResearchPaper | - |
tuhh.institute.german | Mathematik E-10 | de |
tuhh.institute.english | Mathematics E-10 | en |
tuhh.institute.id | 47 | de_DE |
tuhh.type.id | 17 | de_DE |
tuhh.gvk.hasppn | false | - |
dc.type.driver | workingPaper | - |
dc.identifier.oclc | 930768082 | - |
dc.type.casrai | Working Paper | - |
tuhh.relation.ispartofseries | Preprints des Institutes für Mathematik | de_DE |
tuhh.relation.ispartofseriesnumber | 50 | de_DE |
datacite.resourceType | Working Paper | - |
datacite.resourceTypeGeneral | Text | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_8042 | - |
item.creatorGND | Voß, Heinrich | - |
item.openairetype | Working Paper | - |
item.tuhhseriesid | Preprints des Institutes für Mathematik | - |
item.fulltext | With Fulltext | - |
item.cerifentitytype | Publications | - |
item.creatorOrcid | Voß, Heinrich | - |
item.languageiso639-1 | en | - |
item.seriesref | Preprints des Institutes für Mathematik;50 | - |
item.mappedtype | Working Paper | - |
crisitem.author.dept | Mathematik E-10 | - |
crisitem.author.orcid | 0000-0003-2394-375X | - |
crisitem.author.parentorg | Studiendekanat Elektrotechnik, Informatik und Mathematik | - |
Appears in Collections: | Publications with fulltext |
Page view(s)
336
Last Week
0
0
Last month
5
5
checked on Aug 15, 2022
Download(s)
124
checked on Aug 15, 2022
Google ScholarTM
Check
Note about this record
Cite this record
Export
Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.