Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.158
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorBetcke, Timo-
dc.contributor.authorVoß, Heinrich-
dc.date.accessioned2006-02-24T15:32:06Zde_DE
dc.date.available2006-02-24T15:32:06Zde_DE
dc.date.issued2002-06-
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/160-
dc.description.abstractThis article discusses a projection method for nonlinear eigenvalue problems. The ansatz space is constructed by a Jacobi-Davidson type approach, and the arising eigenproblems of small dimension are solved by safeguarded inverse iteration. The method is applied to a rational eigenvalue problem governing the vibrations of tube bundle immersed in an inviscid compressible fluid.en
dc.language.isoende_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectnonlinear eigenvalue problemde_DE
dc.subjectJacobi-Davidson methodde_DE
dc.subjectprojection methodde_DE
dc.subjectRayleigh functionalde_DE
dc.subjectminmax characterizationde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleA Jacobi-Davidson-type Projection Method for nonlinear eigenvalue problemsde_DE
dc.typeWorking Paperde_DE
dc.date.updated2006-03-01T13:29:14Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-2205de_DE
dc.identifier.doi10.15480/882.158-
dc.type.diniworkingPaper-
dc.subject.gndProjektionsverfahrende
dc.subject.gndNichtlineares Eigenwertproblemde
dc.subject.ddccode510-
dc.subject.msc65F15:Eigenvalues, eigenvectorsen
dc.subject.msccode65F15-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-2205de_DE
tuhh.publikation.typworkingPaperde_DE
tuhh.opus.id220de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/160-
tuhh.abstract.englishThis article discusses a projection method for nonlinear eigenvalue problems. The ansatz space is constructed by a Jacobi-Davidson type approach, and the arising eigenproblems of small dimension are solved by safeguarded inverse iteration. The method is applied to a rational eigenvalue problem governing the vibrations of tube bundle immersed in an inviscid compressible fluid.de_DE
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.158-
tuhh.type.opusResearchPaper-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id17de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverworkingPaper-
dc.identifier.oclc930768132-
dc.type.casraiWorking Paper-
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber47de_DE
datacite.resourceTypeWorking Paper-
datacite.resourceTypeGeneralText-
item.seriesrefPreprints des Institutes für Mathematik;47-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.openairecristypehttp://purl.org/coar/resource_type/c_8042-
item.creatorOrcidBetcke, Timo-
item.creatorOrcidVoß, Heinrich-
item.creatorGNDBetcke, Timo-
item.creatorGNDVoß, Heinrich-
item.openairetypeWorking Paper-
item.grantfulltextopen-
item.languageiso639-1en-
item.mappedtypeWorking Paper-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-2394-375X-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
rep47.pdf204,75 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

507
Last Week
3
Last month
6
checked on Nov 30, 2022

Download(s)

223
checked on Nov 30, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.