Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.160
Title: A Method of Order 1+SQRT(3) for Computing the Smallest Eigenvalue of a Symmetric Toeplitz Matrix
Language: English
Authors: Kostić, Aleksandra 
Voß, Heinrich 
Keywords: eigenvalue problem;Toeplitz matrix;secular equation
Issue Date: Mar-2002
Part of Series: Preprints des Institutes für Mathematik 
Volume number: 45
Abstract (english): In this note we discuss a method of order 1+sqrt(3) for computing the smallest eigenvalue lambda_1 of a symmetric and positive definite Toeplitz matrix. It generalizes and improves a method introduced in cite{MacVos97} which is based on rational Hermitean interpolation of the secular equation. Taking advantage of a further rational approximation of the secular equation which is essentially for free and which yields lower bounds of lambda_1 we obtain an improved stopping criterion.
URI: http://tubdok.tub.tuhh.de/handle/11420/162
DOI: 10.15480/882.160
Institute: Mathematik E-10 
Type: Report (Bericht)
Appears in Collections:Publications (tub.dok)

Files in This Item:
File Description SizeFormat
rep45.pdf148,11 kBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

217
Last Week
1
Last month
0
checked on May 25, 2019

Download(s)

54
checked on May 25, 2019

Google ScholarTM

Check

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.