Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.160
Fulltext available Open Access
Title: A Method of Order 1+SQRT(3) for Computing the Smallest Eigenvalue of a Symmetric Toeplitz Matrix
Language: English
Authors: Kostić, Aleksandra 
Voß, Heinrich 
Keywords: eigenvalue problem;Toeplitz matrix;secular equation
Issue Date: Mar-2002
Part of Series: Preprints des Institutes für Mathematik 
Volume number: 45
Abstract (english): In this note we discuss a method of order 1+sqrt(3) for computing the smallest eigenvalue lambda_1 of a symmetric and positive definite Toeplitz matrix. It generalizes and improves a method introduced in cite{MacVos97} which is based on rational Hermitean interpolation of the secular equation. Taking advantage of a further rational approximation of the secular equation which is essentially for free and which yields lower bounds of lambda_1 we obtain an improved stopping criterion.
URI: http://tubdok.tub.tuhh.de/handle/11420/162
DOI: 10.15480/882.160
Institute: Mathematik E-10 
Type: Report (Bericht)
License: In Copyright In Copyright
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
rep45.pdf148,11 kBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

304
Last Week
0
Last month
1
checked on Oct 1, 2020

Download(s)

68
checked on Oct 1, 2020

Google ScholarTM

Check

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.