Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.1622
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorMameka, Nadiia-
dc.contributor.authorMarkmann, Jürgen-
dc.contributor.authorWeissmüller, Jörg-
dc.date.accessioned2018-04-19T09:38:29Z-
dc.date.available2018-04-19T09:38:29Z-
dc.date.issued2017-12-07-
dc.identifier.citationNature communications 1 (8): art. no. 1976 (2017)de_DE
dc.identifier.issn2041-1723de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/1625-
dc.description.abstractThe interior of nanoscale crystals experiences stress that compensates for the capillary forces and that can be large, in the order of 1 GPa. Various studies have speculated on whether and how this surface-induced stress affects the stability and plasticity of small crystals. Yet, experiments have so far failed to discriminate between the surface contribution and other, bulk-related size effects. To clarify the issue, here we study the variation of the flow stress of a nanomaterial while distinctly different variations of the two capillary parameters, surface tension, and surface stress, are imposed under control of an applied electric potential. Our theory qualifies the suggested impact of surface stress as not forceful and instead predicts a significant contribution of the surface energy, as measured by the surface tension. The predictions for the combined potential-dependence and size-dependence of the flow stress are quantitatively supported by the experiment. Previous suggestions, favoring the surface stress as the relevant capillary parameter, are not consistent with our experiment.en
dc.language.isoende_DE
dc.publisherNature Publishing Group UKde_DE
dc.relation.ispartofNature communicationsde_DE
dc.rightsCC BY 4.0de_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc530: Physikde_DE
dc.titleOn the impact of capillarity for strength at the nanoscalede_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-88220333-
dc.identifier.doi10.15480/882.1622-
dc.type.diniarticle-
dc.subject.ddccode530-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-88220333de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/1625-
tuhh.abstract.englishThe interior of nanoscale crystals experiences stress that compensates for the capillary forces and that can be large, in the order of 1 GPa. Various studies have speculated on whether and how this surface-induced stress affects the stability and plasticity of small crystals. Yet, experiments have so far failed to discriminate between the surface contribution and other, bulk-related size effects. To clarify the issue, here we study the variation of the flow stress of a nanomaterial while distinctly different variations of the two capillary parameters, surface tension, and surface stress, are imposed under control of an applied electric potential. Our theory qualifies the suggested impact of surface stress as not forceful and instead predicts a significant contribution of the surface energy, as measured by the surface tension. The predictions for the combined potential-dependence and size-dependence of the flow stress are quantitatively supported by the experiment. Previous suggestions, favoring the surface stress as the relevant capillary parameter, are not consistent with our experiment.de_DE
tuhh.publisher.doi10.1038/s41467-017-01434-2-
tuhh.publication.instituteWerkstoffphysik und -technologie M-22de_DE
tuhh.identifier.doi10.15480/882.1622-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanWerkstoffphysik und -technologie M-22de
tuhh.institute.englishWerkstoffphysik und -technologie M-22de_DE
tuhh.gvk.hasppnfalse-
tuhh.hasurnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.rights.ccversion4.0de_DE
dc.type.casraiJournal Article-
tuhh.container.issue1de_DE
tuhh.container.volume8de_DE
tuhh.container.startpageArticle number: 1976de_DE
dc.relation.projectSFB 986: Teilprojekt B2 - Feste und leichte Hybridwerkstoffe auf Basis nanoporöser Metallede_DE
dc.rights.nationallicensefalsede_DE
item.grantfulltextopen-
item.creatorGNDMameka, Nadiia-
item.creatorGNDMarkmann, Jürgen-
item.creatorGNDWeissmüller, Jörg-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.creatorOrcidMameka, Nadiia-
item.creatorOrcidMarkmann, Jürgen-
item.creatorOrcidWeissmüller, Jörg-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.deptWerkstoffphysik und -technologie M-22-
crisitem.author.deptWerkstoffphysik und -technologie M-22-
crisitem.author.orcid0000-0002-7875-8159-
crisitem.author.orcid0000-0002-1384-0581-
crisitem.author.orcid0000-0002-8958-4414-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.project.grantno192346071-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
s41467-017-01434-2.pdfVerlags-PDF1,65 MBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

244
Last Week
0
Last month
6
checked on Oct 24, 2020

Download(s)

211
checked on Oct 24, 2020

Google ScholarTM

Check

Note about this record

Export

This item is licensed under a Creative Commons License Creative Commons