TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. CRIS
  3. Funding
  4. Adsorbent Synthesis and Multi-scale Modeling of Carbon Capture
 
Options
Projekt Titel
Adsorbent Synthesis and Multi-scale Modeling of Carbon Capture
Förderkennzeichen
KE 464/12-3
Funding code
945.03-734
Startdatum
October 16, 2015
Enddatum
October 15, 2017
Gepris ID
205675079
Loading...
Thumbnail Image
Funder
Deutsche Forschungsgemeinschaft (DFG)  
Institut
Chemische Reaktionstechnik V-2  
Projektleitung
Keil, Frerich
Carbon dioxide emissions from fossil fuel combustion are considered a major contributor to climate change. The CO2 emission can be reduced considerably by post-combustion capture of CO2 adsorbed from power plant flue gas using zeolites or MOFs. A particular problem is the strong adsorption of water inside many nanoporous materials. Prominent examples are open metal site MOFs. One objective of the present proposal is to computationally study and characterize the water adsorption phenomena in nano-porous materials. A theoretical model to interpret the water adsorption behavior in the pores of nano-porous materials will be developed, also a working mixed-gas model to predict physical properties of water containing flue gases at various conditions inside nano-pores. Furthermore, the parasitic-energy model will be extended by including water. A parasitic energy look-up tool will be integrated into a full-fledged open source carbon capture platform. In order to design adsorbers/desorbers multi-component self-diffusion and transport-diffusion coefficients of the flue gas components and their mixtures will be calculated. Finally, a technical concept of a fuel carbon capture plant will be designed.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback