TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Scaling laws of nanoporous metals under uniaxial compression
 
Options

Scaling laws of nanoporous metals under uniaxial compression

Citation Link: https://doi.org/10.15480/882.1678
Publikationstyp
Journal Article
Date Issued
2014-02-01
Sprache
English
Author(s)
Huber, Norbert  orcid-logo
Viswanath, R. N.  
Mameka, Nadiia  
Markmann, Jürgen 
Weissmüller, Jörg  
Institut
Keramische Hochleistungswerkstoffe M-9  
Werkstoffphysik und -technologie M-22  
TORE-DOI
10.15480/882.1678
TORE-URI
http://tubdok.tub.tuhh.de/handle/11420/1681
Journal
Acta materialia  
Volume
67
Start Page
252
End Page
265
Citation
Acta Materialia (67): 252-265 (2014)
Publisher DOI
10.1016/j.actamat.2013.12.003
Scopus ID
2-s2.0-84893175077
Publisher
Elsevier
This study is motivated by discrepancies between recent experimental compression test data of nanoporus gold and the scaling laws for strength and elasticity by Gibson and Ashby. We present a systematic theoretical investigation of the relationship between microstructure
and macroscopic behaviour of nanoporous metals. The microstructure is modelled by four-coordinated spherical nodes interconnected
by cylindrical struts. The node positions are randomly displaced from the lattice points of a diamond lattice. We report scaling laws for Young’s modulus and yield strength, which depend on the extension of nodal connections between the ligaments and the solid fraction. A comparison with the scaling laws of Gibson and Ashby revealed a significant deviation for the yield stress. The model was applied for identifying a continuum constitutive law for the solid fraction. Matching the model’s predicted macroscopic stress–strain behaviour to experimental data for the flow stress at large compression strain requires the incorporation of work hardening in the constitutive law. Furthermore, the amount of disorder of the node positions is decisive in matching the model results to the experimental observations of an anomalously low stiffness and an almost complete lack of transverse plastic strain.
Subjects
nanoporous
structure-property relationship
plastic deformation
compression test
finite-element simulation
DDC Class
530: Physik
620: Ingenieurwissenschaften
Funding(s)
SFB 986, Teilproject B4 - Mikromechanisches Materialverhalten hierarchischer Werkstoffe  
SFB 986: Teilprojekt B2 - Feste und leichte Hybridwerkstoffe auf Basis nanoporöser Metalle  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by-nc-nd/3.0/
Loading...
Thumbnail Image
Name

1-s2.0-S1359645413009385-main.pdf

Size

3.1 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback