Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.1725
This item is licensed with a CreativeCommons licence by/4.0
Publisher DOI: 10.3390/w10070957
Title: Performance evaluation of small sized powdered ferric hydroxide as arsenic adsorbent
Language: English
Authors: Usman, Muhammad 
Katsoyiannis, Ioannis A. 
Mitrakas, Manassis 
Zouboulis, Anastasios I. 
Ernst, Mathias 
Keywords: arsenic adsorption;small sized powdered ferric hydroxide;granular ferric hydroxide;water matrix;adsorption kinetics;drinking water
Issue Date: 20-Jul-2018
Publisher: Multidisciplinary Digital Publishing Institute
Source: Water 10 (7): 957 (2018)
Journal or Series Name: Water 
Abstract (english): The small sized powdered ferric oxy-hydroxide, termed Dust Ferric Hydroxide (DFH), was applied in batch adsorption experiments to remove arsenic species from water. The DFH was characterized in terms of zero point charge, zeta potential, surface charge density, particle size and moisture content. Batch adsorption isotherm experiments indicated that the Freundlich model described the isothermal adsorption behavior of arsenic species notably well. The results indicated that the adsorption capacity of DFH in deionized ultrapure water, applying a residual equilibrium concentration of 10 µg/L at the equilibrium pH value of 7.9 ± 0.1, with a contact time of 24 h (i.e., Q10), was 6.9 and 3.5 µg/mg for As(V) and As(III), respectively, whereas the measured adsorption capacity of the conventionally used Granular Ferric Hydroxide (GFH), under similar conditions, was found to be 2.1 and 1.4 µg/mg for As(V) and As(III), respectively. Furthermore, the adsorption of arsenic species onto DFH in a Hamburg tap water matrix, as well as in an NSF challenge water matrix, was found to be significantly lower. The lowest recorded adsorption capacity at the same equilibrium concentration was 3.2 µg As(V)/mg and 1.1 µg As(III)/mg for the NSF water. Batch adsorption kinetics experiments were also conducted to study the impact of a water matrix on the behavior of removal kinetics for As(V) and As(III) species by DFH, and the respective data were best fitted to the second order kinetic model. The outcomes of this study confirm that the small sized iron oxide-based material, being a by-product of the production process of GFH adsorbent, has significant potential to be used for the adsorptive removal of arsenic species from water, especially when this material can be combined with the subsequent application of low-pressure membrane filtration/separation in a hybrid water treatment process.
URI: http://tubdok.tub.tuhh.de/handle/11420/1728
DOI: 10.15480/882.1725
ISSN: 2073-4441
Institute: Wasserressourcen und Wasserversorgung B-11 
Type: (wissenschaftlicher) Artikel
Appears in Collections:Publications (tub.dok)

Files in This Item:
File Description SizeFormat
water-10-00957-v2.pdf1,15 MBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

121
Last Week
2
Last month
0
checked on Apr 23, 2019

Download(s)

57
checked on Apr 23, 2019

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons