TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Bounds for the minimum eigenvalue of a symmetric Toeplitz matrix
 
Options

Bounds for the minimum eigenvalue of a symmetric Toeplitz matrix

Citation Link: https://doi.org/10.15480/882.175
Publikationstyp
Working Paper
Date Issued
1998-11
Sprache
English
Author(s)
Voß, Heinrich 
Institut
Mathematik E-10  
TORE-DOI
10.15480/882.175
TORE-URI
http://tubdok.tub.tuhh.de/handle/11420/177
First published in
Preprints des Institutes für Mathematik  
Number in series
20
In a recent paper Melman [12] derived upper bounds for the smallest eigenvalue of a real symmetric Toeplitz matrix in terms of the smallest roots of rational and polynomial approximations of the secular equation $f(lambda)=0$, the best of which being constructed by the $(1,2)$-Pad{accent19 e} approximation of $f$. In this paper we prove that this bound is the smallest eigenvalue of the projection of the given eigenvalue problem onto a Krylov space of $T_n^{-1}$ of dimension 3. This interpretation of the bound suggests enhanced bounds of increasing accuracy. They can be substantially improved further by exploiting symmetry properties of the principal eigenvector of $T_n$.
Subjects
Toeplitz matrix
eigenvalue problem
symmetry
DDC Class
510: Mathematik
Lizenz
http://rightsstatements.org/vocab/InC/1.0/
Loading...
Thumbnail Image
Name

rep20.pdf

Size

177.71 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback