Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.177
Title: Newton type methods for computing the smallest eigenvalue of a symmetric Toeplitz matrix
Language: English
Authors: Mackens, Wolfgang 
Voß, Heinrich 
Keywords: Toeplitz matrix;eigenvalue problem
Issue Date: Apr-1998
Part of Series: Preprints des Institutes für Mathematik 
Volume number: 15
Abstract (english): Several methods for computing the smallest eigenvalue of asymmetric positive definite Toeplitz matrix are presented. They converge from the left to the minimum eigenvalue, and they rely on Newton's method and interpolation of the characteristic polynomial with no need for introductory bisection steps. The methods are conceptually much simpler than the ones introduced by the same authors based on rational interpolation of the secular equation.
URI: http://tubdok.tub.tuhh.de/handle/11420/179
DOI: 10.15480/882.177
Institute: Mathematik E-10 
Type: ResearchPaper
Appears in Collections:Publications (tub.dok)

Files in This Item:
File Description SizeFormat
rep15.pdf190,93 kBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

239
Last Week
2
Last month
4
checked on May 20, 2019

Download(s)

56
checked on May 20, 2019

Google ScholarTM

Check

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.