Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.179
Title: Modal and interior nodal masters in parallel condensation methods for generalized eigenvalue problems
Language: English
Authors: Rothe, Kai 
Voß, Heinrich 
Keywords: eigenvalue problems;condensation;parallel methods
Issue Date: Apr-1997
Part of Series: Preprints des Institutes für Mathematik 
Volume number: 12
Abstract (english): For large-scale eigenvalue problems the authors introduced in [4] a coarse grained parallel algorithm for distributed memory computers based on substructuring and static condensation. The approach can be generalized to non-nodal masters if the support of each of the generalized masters is contained in the interior of one substructure. In this note we demonstrate that modal masters are superior to interior nodal masters.
URI: http://tubdok.tub.tuhh.de/handle/11420/181
DOI: 10.15480/882.179
Institute: Mathematik E-10 
Type: ResearchPaper
Appears in Collections:Publications (tub.dok)

Files in This Item:
File Description SizeFormat
rep12.pdf116,14 kBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

291
Last Week
2
Last month
3
checked on May 24, 2019

Download(s)

155
checked on May 24, 2019

Google ScholarTM

Check

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.