Dieses Dokument steht unter einer CreativeCommons Lizenz by/3.0
Verlagslink DOI: 10.1088/1742-6596/721/1/012010
Titel: Dynamic response of mechanical systems to impulse process stochastic excitations: markov approach
Sprache: English
Autor/Autorin: Iwankiewicz, Radosław 
Erscheinungsdatum: 2-Jun-2016
Verlag: IOP
Quellenangabe: Journal of Physics: Conference Series 1 (721): 012010- (2016-06-02)
Zeitschrift oder Schriftenreihe: Journal of physics. Conference Series 
Konferenz: 5th Symposium on the Mechanics of Slender Structures (MoSS2015) 
Zusammenfassung (englisch): Methods for determination of the response of mechanical dynamic systems to Poisson and non-Poisson impulse process stochastic excitations are presented. Stochastic differential and integro-differential equations of motion are introduced. For systems driven by Poisson impulse process the tools of the theory of non-diffusive Markov processes are used. These are: the generalized Itô's differential rule which allows to derive the differential equations for response moments and the forward integro-differential Chapman-Kolmogorov equation from which the equation governing the probability density of the response is obtained. The relation of Poisson impulse process problems to the theory of diffusive Markov processes is given. For systems driven by a class of non-Poisson (Erlang renewal) impulse processes an exact conversion of the original non-Markov problem into a Markov one is based on the appended Markov chain corresponding to the introduced auxiliary pure jump stochastic process. The derivation of the set of integro-differential equations for response probability density and also a moment equations technique are based on the forward integro-differential Chapman-Kolmogorov equation. An illustrating numerical example is also included.
URI: http://tubdok.tub.tuhh.de/handle/11420/1859
DOI: 10.15480/882.1856
ISSN: 1742-6596
Institut: Mechanik und Meerestechnik M-13 
Dokumenttyp: (wissenschaftlicher) Artikel
Enthalten in den Sammlungen:Publications (tub.dok)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
Iwankiewicz_2016_J._Phys.__Conf._Ser._721_012010.pdfVerlags-PDF1,23 MBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Seitenansichten

9
Letzte Woche
4
Letzten Monat
1
checked on 23.03.2019

Download(s)

4
checked on 23.03.2019

Google ScholarTM

Prüfe

Export

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons