Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.1876
DC FieldValueLanguage
dc.contributor.authorŞopu, Daniel-
dc.contributor.authorSoyarslan, Celal-
dc.contributor.authorSarac, Baran-
dc.contributor.authorBargmann, Swantje-
dc.contributor.authorStoica, Mihai-
dc.contributor.authorEckert, Jürgen-
dc.date.accessioned2018-11-26T08:31:29Z-
dc.date.available2018-11-26T08:31:29Z-
dc.date.issued2016-01-21-
dc.identifier.citationActa Materialia (106): 199-207 (2016-03-01)de_DE
dc.identifier.issn1359-6454de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/1879-
dc.description.abstractWe investigate the influence of various critical structural aspects such as pore density, distribution, size and number on the deformation behavior of nanoporous Cu64Zr36glass. By using molecular dynamics and finite element simulations an effective strategy to control the strain localization in nanoporous heterostructures is provided. Depending on the pore distribution in the heterostructure, upon tensile loading the nanoporous glass showed a clear transition from a catastrophic fracture to localized deformation in one dominant shear band, and ultimately to homogeneous plastic flow mediated by a pattern of multiple shear bands. The change in the fracture mechanism from a shear band slip to necking-like homogeneous flow is quantitative interpreted by calculating the critical shear band length. Finally, we identify the most effective heterostructure with enhanced ductility as compared to the monolithic bulk metallic glass. The heterostructure with a fraction of pores of about 3% distributed in such a way that the pores do not align along the maximum shear stress direction shows higher plasticity while retaining almost the same strength as the monolithic glass. Our results provide clear evidence that the mechanical properties of nanoporous glassy materials can be tailored by carefully controlling the design parameters.en
dc.language.isoende_DE
dc.publisherElsevierde_DE
dc.relation.ispartofActa materialiade_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttps://creativecommons.org/licenses/by-nd/4.0/
dc.subjectbulk metallic glassde_DE
dc.subjectnanoporesde_DE
dc.subjectductilityde_DE
dc.subjectmolecular dynamicsde_DE
dc.subjectfinite element analysisde_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleStructure-property relationships in nanoporous metallic glassesde_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-882.023926-
dc.identifier.doi10.15480/882.1876-
dc.type.diniarticle-
dc.subject.ddccode620-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.023926de_DE
tuhh.oai.showtrue-
dc.identifier.hdl11420/1879-
tuhh.abstract.englishWe investigate the influence of various critical structural aspects such as pore density, distribution, size and number on the deformation behavior of nanoporous Cu64Zr36glass. By using molecular dynamics and finite element simulations an effective strategy to control the strain localization in nanoporous heterostructures is provided. Depending on the pore distribution in the heterostructure, upon tensile loading the nanoporous glass showed a clear transition from a catastrophic fracture to localized deformation in one dominant shear band, and ultimately to homogeneous plastic flow mediated by a pattern of multiple shear bands. The change in the fracture mechanism from a shear band slip to necking-like homogeneous flow is quantitative interpreted by calculating the critical shear band length. Finally, we identify the most effective heterostructure with enhanced ductility as compared to the monolithic bulk metallic glass. The heterostructure with a fraction of pores of about 3% distributed in such a way that the pores do not align along the maximum shear stress direction shows higher plasticity while retaining almost the same strength as the monolithic glass. Our results provide clear evidence that the mechanical properties of nanoporous glassy materials can be tailored by carefully controlling the design parameters.de_DE
tuhh.publisher.doi10.1016/j.actamat.2015.12.026-
tuhh.publication.instituteKontinuums- und Werkstoffmechanik M-15de_DE
tuhh.identifier.doi10.15480/882.1876-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanKontinuums- und Werkstoffmechanik M-15de
tuhh.institute.englishKontinuums- und Werkstoffmechanik M-15de_DE
tuhh.gvk.hasppnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.rights.ccversion4.0de_DE
dc.type.casraiJournal Article-
tuhh.container.volume106de_DE
tuhh.container.startpage199de_DE
tuhh.container.endpage207de_DE
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-84956998573-
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.openairetypeArticle-
item.creatorOrcidŞopu, Daniel-
item.creatorOrcidSoyarslan, Celal-
item.creatorOrcidSarac, Baran-
item.creatorOrcidBargmann, Swantje-
item.creatorOrcidStoica, Mihai-
item.creatorOrcidEckert, Jürgen-
item.grantfulltextopen-
item.creatorGNDŞopu, Daniel-
item.creatorGNDSoyarslan, Celal-
item.creatorGNDSarac, Baran-
item.creatorGNDBargmann, Swantje-
item.creatorGNDStoica, Mihai-
item.creatorGNDEckert, Jürgen-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.mappedtypeArticle-
crisitem.author.deptKontinuums- und Werkstoffmechanik M-15-
crisitem.author.deptKontinuums- und Werkstoffmechanik M-15-
crisitem.author.orcid0000-0001-5531-462X-
crisitem.author.orcid0000-0003-1029-237X-
crisitem.author.orcid0000-0002-0130-3914-
crisitem.author.orcid0000-0001-7403-7066-
crisitem.author.orcid0000-0003-4112-3181-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
1-s2.0-S135964541530135X-main.pdfVerlags-PDF3,99 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

243
Last Week
1
Last month
4
checked on Mar 30, 2023

Download(s)

277
checked on Mar 30, 2023

SCOPUSTM   
Citations

78
Last Week
1
Last month
4
checked on Jun 30, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons