Please use this identifier to cite or link to this item:
https://doi.org/10.15480/882.1968
Publisher DOI: | 10.1155/2018/9648126 | Title: | A biologically inspired framework for the intelligent control of mechatronic systems and its application to a micro diving agent | Language: | English | Authors: | Bessa, Wallace Moreira Brinkmann, Gerrit Dücker, Daniel-André ![]() Kreuzer, Edwin Solowjow, Eugen |
Issue Date: | 30-Dec-2018 | Publisher: | Hindawi Publishing Corporation | Source: | Wallace M. Bessa, Gerrit Brinkmann, Daniel A. Duecker, Edwin Kreuzer, and Eugen Solowjow, “A Biologically Inspired Framework for the Intelligent Control of Mechatronic Systems and Its Application to a Micro Diving Agent,” Mathematical Problems in Engineering, vol. 2018, Article ID 9648126, 16 pages, 2018. doi:10.1155/2018/9648126 | Abstract (english): | Mechatronic systems are becoming an intrinsic part of our daily life, and the adopted control approach in turn plays an essential role in the emulation of the intelligent behavior. In this paper, a framework for the development of intelligent controllers is proposed. We highlight that robustness, prediction, adaptation, and learning, which may be considered the most fundamental traits of all intelligent biological systems, should be taken into account within the project of the control scheme. Hence, the proposed framework is based on the fusion of a nonlinear control scheme with computational intelligence and also allows mechatronic systems to be able to make reasonable predictions about its dynamic behavior, adapt itself to changes in the plant, learn by interacting with the environment, and be robust to both structured and unstructured uncertainties. In order to illustrate the implementation of the control law within the proposed framework, a new intelligent depth controller is designed for a microdiving agent. On this basis, sliding mode control is combined with an adaptive neural network to provide the basic intelligent features. Online learning by minimizing a composite error signal, instead of supervised off-line training, is adopted to update the weight vector of the neural network. The boundedness and convergence properties of all closed-loop signals are proved using a Lyapunov-like stability analysis. Numerical simulations and experimental results obtained with the microdiving agent demonstrate the efficacy of the proposed approach and its suitableness for both stabilization and trajectory tracking problems. |
URI: | https://tubdok.tub.tuhh.de/handle/11420/1971 | DOI: | 10.15480/882.1968 | ISSN: | 1563-5147 | Journal: | Mathematical problems in engineering | Institute: | Mechanik und Meerestechnik M-13 | Document Type: | Article | More Funding information: | DFG [Kr752/33-1, Kr752/36-1] u.a. | License: | ![]() |
Appears in Collections: | Publications with fulltext |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
MPE.2018.9648126.pdf | 2,87 MB | Adobe PDF | View/Open![]() |
Page view(s)
1,469
Last Week
18
18
Last month
10
10
checked on Mar 22, 2023
Download(s)
1,141
checked on Mar 22, 2023
SCOPUSTM
Citations
5
Last Week
0
0
Last month
0
0
checked on Jun 30, 2022
Google ScholarTM
Check
Note about this record
Cite this record
Export
This item is licensed under a Creative Commons License