Please use this identifier to cite or link to this item:
Publisher DOI: 10.1590/0104-9224/SI2101.04
Title: Influência da velocidade de rotação do rebite na microestrutura e no desempenho mecânico de juntas de compósito termofixo rebitadas por fricção
Other Titles: Influence of rotational speed on the microstructure and mechanical performance of friction-riveted thermosetting composite joints
Language: Portugese
Authors: Borba, Natascha Zocoller 
Blaga, Lucian A. 
Santos, Jorge F. dos 
Canto, Leonardo Bresciani 
Amancio, Sergio 
Keywords: Estruturas híbridas; Rebitagem por fricção; Ti-6Al-4V; Compósito termofixo; Hybrid structures; Friction riveting; Thermoset composite
Issue Date: 18-Jan-2016
Source: Soldagem e Inspecao 1 (21): 30-43 (2016-01-01)
Abstract (english): 
Facing the actual demand for efficient joining technologies for multi-materials structures, Friction Riveting was shown to be an alternative joining technology for thermoset composite profiles in civil infrastructure. This process is based on plasticizing and deforming the tip of a rotating metallic rivet within a polymeric component through frictional heating. The feasibility of friction-riveted hybrid joints of Ti-6Al-4V/glass-fiber reinforced thermoset polyester was already demonstrated in a separate work. This paper complements this study by analyzing the rivet rotational speed effect on the process temperature, joint microstructure and the local and global mechanical properties of the joint. Joints were produced using two different levels of rotational speed: 9000 rpm and 10000 rpm (the other parameters were kept constant). The results showed process temperatures (655-765 °C) up to 96% higher than the onset decomposition temperature of the polyester matrix (370 °C); this led to severe degradation of the composite in the joint area. The increase in rotational speed, and therefore in heat generation, led to a statistically insignificant increase of the rivet penetration depth and the rivet diameter widening. However, the extension of the degraded composite area increased 47% which was responsible to deteriorate in 50% the joint tensile strength (from 4.0 ± 1.2 kN to 2.0 ± 0.7 kN). Moreover, the microhardness map of the joined rivet evidenced possible phase transformations in the alloy, favoring the material hardening by increasing in rotational speed. However, no correlations could be established between the changes in hardness and the joint tensile strength since the joints majority failure by full rivet pull-out. Thereby, for the improvement of friction-riveted Ti-6Al-4V/ glass-fiber reinforced thermoset polyester joints, the optimization of rotational speed is essential. This can guarantee the formation of efficient anchored joints and wider rivet tip deformation, concomitantly with the minimizing of the extension of the matrix degradation and finally leading to better tensile strength of the joints.
DOI: 10.15480/882.2014
ISSN: 1980-6973
Journal: Revista soldagem & inspeção 
Institute: Kunststoffe und Verbundwerkstoffe M-11 
Document Type: Article
License: CC BY-NC 4.0 (Attribution-NonCommercial) CC BY-NC 4.0 (Attribution-NonCommercial)
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
0104-9224-si-21-1-32.pdfVerlags-PDF5,61 MBAdobe PDFView/Open
Show full item record

Page view(s)

Last Week
Last month
checked on Jan 29, 2023


checked on Jan 29, 2023


Last Week
Last month
checked on Jun 30, 2022

Google ScholarTM


Note about this record

Cite this record


This item is licensed under a Creative Commons License Creative Commons