Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2086
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorGor, Gennady Y.-
dc.contributor.authorHuber, Patrick-
dc.contributor.authorWeissmüller, Jörg-
dc.date.accessioned2019-03-11T09:47:19Z-
dc.date.available2019-03-11T09:47:19Z-
dc.date.issued2018-08-31-
dc.identifier.citationPhysical Review Materials 8 (2): 086002 (2018-08-31)de_DE
dc.identifier.issn2475-9953de_DE
dc.identifier.urihttp://hdl.handle.net/11420/2090-
dc.description.abstractAdsorption-induced deformation of porous materials is the generation of strains in a solid due to its interaction with adsorbing fluids. The theoretical description of adsorption-induced deformation often relies on the so-called solvation pressure, the normal component of a pressure tensor in the liquid adsorbed in the pore. Recent measurements of adsorption-induced strains in two dimensions require a description that allows for the deformation to be anisotropic. Here, we present such a description. We refrain from using the solvation pressure concept and instead base the discussion on a phenomenological description of coupled mechanics and adsorption that has well-established links to continuum mechanics. We find that our approach captures all relevant features of anisotropic sorption strain; the approach thus provides a useful alternative to the solvation pressure concept. We derive analytical expressions for the stress-strain relations in a model porous material with an array of parallel channel-like pores of high aspect ratio (length/width). These relations include separate terms from the liquid pressure, from the surface stress at the liquid-solid interface, and from a spreading tension at the solid-liquid-vapor triple line. Surface stress and liquid pressure contribute to the strains along and normal to the pore axis in a qualitatively different manner. The underlying discussion of capillary forces sheds light on the variation of the surface stress during adsorption and capillary condensation.en
dc.language.isoende_DE
dc.publisherAPSde_DE
dc.relation.ispartofPhysical review materialsde_DE
dc.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.subject.ddc530: Physikde_DE
dc.subject.ddc600: Technikde_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleElastocapillarity in nanopores: sorption strain from the actions of surface tension and surface stressde_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-882.027664-
dc.identifier.doi10.15480/882.2086-
dc.type.diniarticle-
dc.subject.ddccode620-
dc.subject.ddccode600-
dc.subject.ddccode530-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.027664-
tuhh.oai.showtruede_DE
tuhh.abstract.englishAdsorption-induced deformation of porous materials is the generation of strains in a solid due to its interaction with adsorbing fluids. The theoretical description of adsorption-induced deformation often relies on the so-called solvation pressure, the normal component of a pressure tensor in the liquid adsorbed in the pore. Recent measurements of adsorption-induced strains in two dimensions require a description that allows for the deformation to be anisotropic. Here, we present such a description. We refrain from using the solvation pressure concept and instead base the discussion on a phenomenological description of coupled mechanics and adsorption that has well-established links to continuum mechanics. We find that our approach captures all relevant features of anisotropic sorption strain; the approach thus provides a useful alternative to the solvation pressure concept. We derive analytical expressions for the stress-strain relations in a model porous material with an array of parallel channel-like pores of high aspect ratio (length/width). These relations include separate terms from the liquid pressure, from the surface stress at the liquid-solid interface, and from a spreading tension at the solid-liquid-vapor triple line. Surface stress and liquid pressure contribute to the strains along and normal to the pore axis in a qualitatively different manner. The underlying discussion of capillary forces sheds light on the variation of the surface stress during adsorption and capillary condensation.de_DE
tuhh.publisher.doi10.1103/PhysRevMaterials.2.086002-
tuhh.publication.instituteWerkstoffphysik und -technologie M-22de_DE
tuhh.identifier.doi10.15480/882.2086-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanWerkstoffphysik und -technologie M-22de
tuhh.institute.englishWerkstoffphysik und -technologie M-22de_DE
tuhh.gvk.hasppnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.rights.ccversion4.0de_DE
dc.type.casraiJournal Article-
tuhh.container.issue8de_DE
tuhh.container.volume2de_DE
tuhh.container.startpageArt.-Nr. 086002de_DE
dc.relation.projectSFB 986: Teilprojekt B2 - Feste und leichte Hybridwerkstoffe auf Basis nanoporöser Metallede_DE
dc.relation.projectSFB 986, Teilproject B7 - Polymere in grenzflächenbestimmten Geometrien: Struktur, Dynamik und Funktion an planaren und in porösen Hybridsystemende_DE
dc.rights.nationallicensefalsede_DE
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.creatorGNDGor, Gennady Y.-
item.creatorGNDHuber, Patrick-
item.creatorGNDWeissmüller, Jörg-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidGor, Gennady Y.-
item.creatorOrcidHuber, Patrick-
item.creatorOrcidWeissmüller, Jörg-
item.openairetypeArticle-
item.grantfulltextopen-
crisitem.author.deptWerkstoffphysik und -technologie M-22-
crisitem.author.deptWerkstoffphysik und -technologie M-22-
crisitem.author.orcid0000-0001-7455-1778-
crisitem.author.orcid0000-0002-2126-9100-
crisitem.author.orcid0000-0002-8958-4414-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
PhysRevMaterials.2.086002.pdfVerlags-PDF1,24 MBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

142
Last Week
2
Last month
4
checked on Jul 7, 2020

Download(s)

143
checked on Jul 7, 2020

Google ScholarTM

Check

Note about this record

Export

This item is licensed under a Creative Commons License Creative Commons