Zitierlink: urn:urn:nbn:de:gbv:830-882.027878 (Link)
Verlagslink DOI: 10.1016/j.engfracmech.2018.12.023
Titel: On unified crack propagation laws
Sprache: English
Autor/Autorin: Papangelo, Antonio 
Guarino, R. 
Pugno, N. 
Ciavarella, Michele 
Erscheinungsdatum: 15-Feb-2019
Quellenangabe: Engineering Fracture Mechanics (207): 269-276 (2019-02-15)
Zeitschrift oder Schriftenreihe: Engineering fracture mechanics 
Zusammenfassung (englisch): © 2018 Elsevier Ltd The anomalous propagation of short cracks shows generally exponential fatigue crack growth but the dependence on stress range at high stress levels is not compatible with Paris’ law with exponent m=2. Indeed, some authors have shown that the standard uncracked SN curve is obtained mostly from short crack propagation, assuming that the crack size a increases with the number of cycles N as [Formula presented]=HΔσha where h is close to the exponent of the Basquin's power law SN curve. We therefore propose a general equation for crack growth which for short cracks has the latter form, and for long cracks returns to the Paris’ law. We show generalized SN curves, generalized Kitagawa–Takahashi diagrams, and discuss the application to some experimental data. The problem of short cracks remains however controversial, as we discuss with reference to some examples.
URI: http://hdl.handle.net/11420/2115
ISSN: 0013-7944
Institut: Produktentwicklung und Konstruktionstechnik M-17 
Dokumenttyp: (wissenschaftlicher) Artikel
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige


checked on 22.03.2019

Google ScholarTM



Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.