Publisher DOI: 10.1016/j.engfracmech.2018.12.023
Title: On unified crack propagation laws
Language: English
Authors: Papangelo, Antonio 
Guarino, R. 
Pugno, Nicola M. 
Ciavarella, Michele 
Issue Date: 15-Feb-2019
Source: Engineering Fracture Mechanics (207): 269-276 (2019-02-15)
Journal or Series Name: Engineering fracture mechanics 
Abstract (english): The anomalous propagation of short cracks shows generally exponential fatigue crack growth but the dependence on stress range at high stress levels is not compatible with Paris’ law with exponent m=2. Indeed, some authors have shown that the standard uncracked SN curve is obtained mostly from short crack propagation, assuming that the crack size a increases with the number of cycles N as [Formula presented]=HΔσha where h is close to the exponent of the Basquin's power law SN curve. We therefore propose a general equation for crack growth which for short cracks has the latter form, and for long cracks returns to the Paris’ law. We show generalized SN curves, generalized Kitagawa–Takahashi diagrams, and discuss the application to some experimental data. The problem of short cracks remains however controversial, as we discuss with reference to some examples.
ISSN: 0013-7944
Institute: Produktentwicklung und Konstruktionstechnik M-17 
Type: (wissenschaftlicher) Artikel
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

Last Week
Last month
checked on Oct 1, 2020

Google ScholarTM


Add Files to Item

Note about this record


Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.