Verlagslink DOI: 10.1002/nla.2228
Titel: On the distribution of real eigenvalues in linear viscoelastic oscillators
Sprache: Englisch
Autor/Autorin: Mohammadi, Seyyed Abbas 
Voß, Heinrich 
Erscheinungs­datum: Mär-2019
Quellenangabe: Numerical Linear Algebra with Applications 2 (26): e2228 (2019-03)
Zusammenfassung (englisch): 
© 2019 John Wiley & Sons, Ltd. In this paper, a linear viscoelastic system is considered where the viscoelastic force depends on the past history of motion via a convolution integral over an exponentially decaying kernel function. The free-motion equation of this nonviscous system yields a nonlinear eigenvalue problem that has a certain number of real eigenvalues corresponding to the nonoscillatory nature. The quality of the current numerical methods for deriving those eigenvalues is directly related to damping properties of the viscoelastic system. The main contribution of this paper is to explore the structure of the set of nonviscous eigenvalues of the system while the damping coefficient matrices are rank deficient and the damping level is changing. This problem will be investigated in the cases of low and high levels of damping, and a theorem that summarizes the possible distribution of real eigenvalues will be proved. Moreover, upper and lower bounds are provided for some of the eigenvalues regarding the damping properties of the system. Some physically realistic examples are provided, which give us insight into the behavior of the real eigenvalues while the damping level is changing.
ISSN: 1099-1506
Zeitschrift: Numerical linear algebra with applications 
Institut: Mathematik E-10 
Dokumenttyp: Artikel/Aufsatz
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige


Letzte Woche
Letzten Monat
checked on 01.10.2022


Letzte Woche
Letzten Monat
checked on 30.06.2022

Google ScholarTM


Volltext ergänzen

Feedback zu diesem Datensatz

Diesen Datensatz zitieren


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.