Zitierlink: urn:urn:nbn:de:gbv:830-882.028438 (Link)
Verlagslink DOI: 10.1021/acs.jpcc.8b07617
Titel: Combined Computational and Experimental Study on the Influence of Surface Chemistry of Carbon-Based Electrodes on Electrode-Electrolyte Interactions in Supercapacitors
Sprache: English
Autor/Autorin: Schweizer, Sabine 
Landwehr, Johannes 
Etzold, Bastian J.M. 
Meißner, Robert Horst 
Amkreutz, Marc 
Schiffels, Peter 
Hill, Jörg Rüdiger 
Erscheinungsdatum: 7-Feb-2019
Quellenangabe: Journal of Physical Chemistry C 5 (123): 2716-2727 (2019-02-07)
Zeitschrift oder Schriftenreihe: The Journal of Physical Chemistry C 
Zusammenfassung (englisch): Supercapacitors are regarded as a promising technology for novel, powerful energy-storage systems. The mechanism of energy storage in these capacitors is not fully understood yet because of the complex molecular mechanisms at the atomistic scale. Exploring the processes at the nanoscale provides necessary fundamental and thorough insights for improving the performance of such devices. In this work, we present a combined computational and experimental study on electrode-electrolyte interactions in electric double-layer capacitors. The influence of pore size and surface chemistry of carbon-based electrode material on interactions with the electrolyte has been investigated for an organic and inorganic electrolyte using density functional theory calculations. In addition, solvent effects on the interaction strength have been systematically explored. We found that experimentally determined effects of pore confinement can be linked with calculated interaction energies, providing a suitable descriptor for virtual prescreening approaches. Our results show that the pore size significantly affects the interaction quality with the electrolyte. This effect and the influence of chemical functionalization have a stronger impact on the interaction with anions than with cations. Moreover, our studies indicate that solvent effects are especially important for surface functional groups that allow for hydrogen bonding. Overall, our results provide relevant information on how structural and electronic effects affect confinement, wettability, and mobility of electrolyte molecules, which is important for boosting and tuning the performance of supercapacitors. ©Copyright © 2019 American Chemical Society.
URI: http://hdl.handle.net/11420/2159
ISSN: 1932-7447
Institut: Kunststoffe und Verbundwerkstoffe M-11 
Dokumenttyp: (wissenschaftlicher) Artikel
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige


checked on 23.03.2019

Google ScholarTM



Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.