Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2161
Publisher DOI: 10.1038/s41598-019-39934-4
Title: Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticles
Language: English
Authors: Domènech Garcia, Berta 
Kampferbeck, Michael 
Larsson, Emanuel 
Krekeler, Tobias 
Bor, Büsra 
Giuntini, Diletta 
Blankenburg, Malte 
Ritter, Martin  
Müller, Martin 
Vossmeyer, Tobias 
Weller, Horst 
Schneider, Gerold A. 
Issue Date: 5-Mar-2019
Source: Scientific reports 1 (9): 3435 (2019)
Journal or Series Name: Scientific reports 
Abstract (english): Biomaterials often display outstanding combinations of mechanical properties thanks to their hierarchical structuring, which occurs through a dynamically and biologically controlled growth and self-assembly of their main constituents, typically mineral and protein. However, it is still challenging to obtain this ordered multiscale structural organization in synthetic 3D-nanocomposite materials. Herein, we report a new bottom-up approach for the synthesis of macroscale hierarchical nanocomposite materials in a single step. By controlling the content of organic phase during the self-assembly of monodisperse organically-modified nanoparticles (iron oxide with oleyl phosphate), either purely supercrystalline or hierarchically structured supercrystalline nanocomposite materials are obtained. Beyond a critical concentration of organic phase, a hierarchical material is consistently formed. In such a hierarchical material, individual organically-modified ceramic nanoparticles (Level 0) self-assemble into supercrystals in face-centered cubic superlattices (Level 1), which in turn form granules of up to hundreds of micrometers (Level 2). These micrometric granules are the constituents of the final mm-sized material. This approach demonstrates that the local concentration of organic phase and nano-building blocks during self-assembly controls the final material's microstructure, and thus enables the fine-tuning of inorganic-organic nanocomposites' mechanical behavior, paving the way towards the design of novel high-performance structural materials.
URI: http://hdl.handle.net/11420/2247
DOI: 10.15480/882.2161
ISSN: 2045-2322
Institute: Keramische Hochleistungswerkstoffe M-9 
Betriebseinheit Elektronenmikroskopie M-26 
Type: (wissenschaftlicher) Artikel
Funded by: The authors gratefully acknowledge the financial support from the German Research Foundation (DFG) via the SFB 986-M3, projects A1, A6, Z2, and Z3. We thank Dr. F. Beckmann (Helmholtz-Zentrum Geesthacht, Geesthacht, Germany) for scanning the sample with the technique SRµCT and for reconstructing the slices, and Dr. I. Greving (Helmholtz-Zentrum Geesthacht, Geesthacht, Germany) for her inputs on SRµCT. Dr. F. Brun (National Institute of Nuclear Physics, Trieste, Italy) is acknowledged for the discussion regarding quantitative analysis using Pore3d.
Project: SFB 986, Teilproject A6 - Herstellung und Charakterisierung hierarchischer, multi-funktionaler Keramik/Metall-Polymer Materialsysteme 
SFB 986: Zentralprojekt Z3 - Elektronenmikroskopie an multiskaligen Materialsystemen 
License: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
s41598-019-39934-4.pdf2,71 MBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

190
Last Week
2
Last month
2
checked on Aug 11, 2020

Download(s)

161
checked on Aug 11, 2020

Google ScholarTM

Check

Note about this record

Export

This item is licensed under a Creative Commons License Creative Commons