TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Assessment of additives avoiding the release of problematic species into the gas phase during biomass combustion—development of a fast screening method based on TGA
 
Options

Assessment of additives avoiding the release of problematic species into the gas phase during biomass combustion—development of a fast screening method based on TGA

Publikationstyp
Journal Article
Date Issued
2019-03-01
Sprache
English
Author(s)
Höfer, Isabel  
Kaltschmitt, Martin  
Institut
Umwelttechnik und Energiewirtschaft V-9  
TORE-URI
http://hdl.handle.net/11420/2255
Journal
Biomass Conversion and Biorefinery  
Volume
9
Issue
1
Start Page
21
End Page
33
Citation
Biomass Conversion and Biorefinery 1 (9): 21-33 (2019-03-01)
Publisher DOI
10.1007/s13399-016-0229-3
Scopus ID
2-s2.0-85063124800
Particulate matter (PM) emissions formed during combustion of solid biofuels and released with the flue gas into the atmosphere are harmful to humans and the environment. A possibility to reduce such PM emissions is the addition of additives to the solid biofuels avoiding the formation of compounds released as particulate matter emissions. So far, different additives have been identified in the literature assessed by a broad variety of (expensive) chemical analysis techniques. Against this background, the overall objective of this paper is it to show that a thermal gravimetric analysis (TGA) is sufficient to estimate the influence of a specific additive on the particulate matter emissions formed during combustion in the lab scale. This can be realised by comparing mixtures between additives and biomass blends with a TGA standard measurement procedure with a reference sample prepared from the respective biomass blend mixed with SiO 2 as an inert additive. To show the applicability of this approach, seven additives (kaolinite, Zn, CaHPO 4 , MgHPO 4 , CaO, MgCO 3 and MnCO 3 ) are tested with two different wood/straw blends. The results of the presented analytical method demonstrate that especially the additives kaolinite, Zn, CaHPO 4 and MnCO 3 have a low mass loss (< 10 wt.%) for wood/straw blends with an amount of straw of 10 and 20 wt.% and therefore reduced emission released into the gas phase compared to the reference sample with SiO 2 . Further analysis in the lab (IC, AAS and XRD) demonstrated that these additives lead to an enrichment of problematic species K, Na, PO 43− and SO 42− , typically found in PM emissions, in the coarse ashes and thus avoid the transfer of these substances into the gas phase.
DDC Class
600: Technology
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback