DC FieldValueLanguage
dc.contributor.authorBrunetti, J.-
dc.contributor.authorD'Ambrogio, W.-
dc.contributor.authorHoffmann, Norbert-
dc.contributor.authorMassi, F.-
dc.date.accessioned2019-04-09T14:29:24Z-
dc.date.available2019-04-09T14:29:24Z-
dc.date.issued2018-
dc.identifier.citationProceedings of ISMA 2018 - International Conference on Noise and Vibration Engineering and USD 2018 - International Conference on Uncertainty in Structural Dynamics: 2727-2738 (2018-01-01)de_DE
dc.identifier.isbn978-907380299-5de_DE
dc.identifier.urihttp://hdl.handle.net/11420/2296-
dc.description.abstractIn non-conservative systems with frictional contact interfaces, the complex eigenvalue analysis is widely used to detect the instabilities of the system and it is generally performed on a linearized model around the equilibrium position. The change of contact status, due to the apparent negative damping, modifies the system dynamics and in certain condition it can induce instabilities. For instance, an equilibrium position that is stable in uniform sliding conditions can become a limit cycle when a portion of the contact interface passes from sliding to sticking condition, due to the action of an external perturbation force. In this paper this bi-stable behavior, that is typical of mechanical system with subcritical Hopf bifurcations, is investigated by a lumped parameter model with frictional contact. The effect of the friction on the system eigenvalues is analyzed not only for the uniform sliding condition but also for the other possible contact states, finding the ranges of the friction coefficient value that could lead to a bi-stable behavior.en
dc.relation.ispartofProceedings of ISMA 2018 - International Conference on Noise and Vibration Engineering and USD 2018 - International Conference on Uncertainty in Structural Dynamicsde_DE
dc.titleInvestigating the bi-stable behavior of a lumped system with frictional contactde_DE
dc.typeinProceedingsde_DE
dc.type.dinicontributionToPeriodical-
dcterms.DCMITypeText-
tuhh.abstract.englishIn non-conservative systems with frictional contact interfaces, the complex eigenvalue analysis is widely used to detect the instabilities of the system and it is generally performed on a linearized model around the equilibrium position. The change of contact status, due to the apparent negative damping, modifies the system dynamics and in certain condition it can induce instabilities. For instance, an equilibrium position that is stable in uniform sliding conditions can become a limit cycle when a portion of the contact interface passes from sliding to sticking condition, due to the action of an external perturbation force. In this paper this bi-stable behavior, that is typical of mechanical system with subcritical Hopf bifurcations, is investigated by a lumped parameter model with frictional contact. The effect of the friction on the system eigenvalues is analyzed not only for the uniform sliding condition but also for the other possible contact states, finding the ranges of the friction coefficient value that could lead to a bi-stable behavior.de_DE
tuhh.publication.instituteStrukturdynamik M-14de_DE
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
tuhh.institute.germanStrukturdynamik M-14de
tuhh.institute.englishStrukturdynamik M-14de_DE
tuhh.gvk.hasppnfalse-
dc.type.drivercontributionToPeriodical-
dc.type.casraiConference Paper-
tuhh.container.startpage2727de_DE
tuhh.container.endpage2738de_DE
item.fulltextNo Fulltext-
item.creatorGNDBrunetti, J.-
item.creatorGNDD'Ambrogio, W.-
item.creatorGNDHoffmann, Norbert-
item.creatorGNDMassi, F.-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.creatorOrcidBrunetti, J.-
item.creatorOrcidD'Ambrogio, W.-
item.creatorOrcidHoffmann, Norbert-
item.creatorOrcidMassi, F.-
item.openairetypeinProceedings-
item.grantfulltextnone-
crisitem.author.deptStrukturdynamik M-14-
crisitem.author.orcid0000-0003-2074-3170-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

78
Last Week
0
Last month
1
checked on Jul 7, 2020

Google ScholarTM

Check

Add Files to Item

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.