TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Damage mechanisms of tailored few-layer graphene modified CFRP cross-ply laminates
 
Options

Damage mechanisms of tailored few-layer graphene modified CFRP cross-ply laminates

Publikationstyp
Journal Article
Date Issued
2019-02
Author(s)
Leopold, Christian  orcid-logo
Just, Gordon  
Koch, Ilja  
Schetle, Andreas  
Kosmann, Julia B.  
Gude, Maik  
Fiedler, Bodo  orcid-logo
Institut
Kunststoffe und Verbundwerkstoffe M-11  
TORE-URI
http://hdl.handle.net/11420/2316
Journal
Composites Part A: Applied Science and Manufacturing  
Volume
117
Start Page
332
End Page
344
Citation
Composites Part A: Applied Science and Manufacturing (117): 332-344 (2019-02)
Publisher DOI
10.1016/j.compositesa.2018.12.005
Scopus ID
2-s2.0-85058240395
A tailored nanoparticle modification approach for fibre reinforced polymers (FRP) is presented that allows exact analysis of the impact of a nanoparticle matrix modification in either 0°- or 90°-layers of cross-ply laminates on the mechanical properties and damage mechanisms. A modification of the 0°-layers unexpectedly increases the quasi-static tensile strength, although dominated by fibre properties. Positive crack stopping effects as well as negative effects, such as accelerated delamination growth, are discussed. The applicability of nanoparticle modified resin systems to improve the performance of FRP-laminates is sensitive to the loading case. For laminates only loaded in tension a modification appears to be advantageous, whereas in case of bending or compression loads the effect of nanoparticles is ambiguous and should be applied carefully.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback