TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Processing, growth mechanism and thermodynamic calculations of carbon foam with a hollow tetrapodal morphology – Aerographite
 
Options

Processing, growth mechanism and thermodynamic calculations of carbon foam with a hollow tetrapodal morphology – Aerographite

Publikationstyp
Journal Article
Date Issued
2019-03-15
Sprache
English
Author(s)
Marx, Janik  
Lewke, M. R. D.  
Smazna, Daria  
Mishra, Yogendra Kumar  
Adelung, Rainer  
Schulte, Karl  
Fiedler, Bodo  orcid-logo
Institut
Kunststoffe und Verbundwerkstoffe M-11  
TORE-URI
http://hdl.handle.net/11420/2321
Journal
Applied surface science  
Volume
470
Start Page
535
End Page
542
Citation
Applied Surface Science (470): 535-542 (2019-03-15)
Publisher DOI
10.1016/j.apsusc.2018.11.016
Scopus ID
2-s2.0-85057021553
B.V. Aerographite is a 3D interconnected carbon foam with a tetrapodal morphology. The synthesis of Aerographite is based on a two-step process: first the production of a zinc oxide (ZnO) template in a flame transport synthesis (FTS) followed by the replication into the carbon structure in a chemical vapour deposition process (CVD). This study presents a growth model of this 3D carbon foam via analyzing the newly formed carbon structure in an interrupted synthesis by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Moreover, the Gibbs free energy of the occurred replica CVD (rCVD) process, based on the reduction of ZnO and the formation of carbon layers, was calculated. During the CVD process the injected carbon deposits on the surfaces of the ZnO tetrapods, while simultaneously the replication into the carbon structure takes place, as a result of the reduction of ZnO into gaseous zinc and water vapour, which is due to the reaction of ZnO with the hydrogen (H 2 ) from the injected source. This replication of the ZnO template into a carbon structure is based on an epitaxial controlled process combined with a catalytic graphitization, whereby the morphology of the template structure is replicated by the carbon. Furthermore, the influence of the growth process on the arrangement of carbon in layers and formation of defects was explained.
DDC Class
600: Technology
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback