DC FieldValueLanguage
dc.contributor.authorLe Borne, Sabine-
dc.contributor.authorWende, Michael-
dc.date.accessioned2019-04-16T14:49:27Z-
dc.date.available2019-04-16T14:49:27Z-
dc.date.issued2019-02-15-
dc.identifier.citationComputers and Mathematics with Applications 4 (77): 1178-1196 (2019-02-15)de_DE
dc.identifier.issn0898-1221de_DE
dc.identifier.urihttp://hdl.handle.net/11420/2327-
dc.description.abstractScattered data interpolation using conditionally positive definite radial basis functions (RBFs) requires the solution of a symmetric saddle-point system. Based on an approximation of the system matrix as a hierarchical matrix, we solve the system iteratively using the GMRes algorithm and a domain decomposition preconditioner. The novelty of our work lies in the proposed solution of the subdomain problems using the nullspace method with an orthogonal basis represented as a sequence of Householder reflectors. The resulting positive definite subdomain systems are solved either directly or using an inner GMRes iteration with H-Cholesky preconditioning. Numerical tests demonstrate the effectiveness of this solution process for up to N=160000 centers in two and three dimensions.en
dc.language.isoende_DE
dc.relation.ispartofComputers and mathematics with applicationsde_DE
dc.titleDomain decomposition methods in scattered data interpolation with conditionally positive definite radial basis functionsde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishScattered data interpolation using conditionally positive definite radial basis functions (RBFs) requires the solution of a symmetric saddle-point system. Based on an approximation of the system matrix as a hierarchical matrix, we solve the system iteratively using the GMRes algorithm and a domain decomposition preconditioner. The novelty of our work lies in the proposed solution of the subdomain problems using the nullspace method with an orthogonal basis represented as a sequence of Householder reflectors. The resulting positive definite subdomain systems are solved either directly or using an inner GMRes iteration with H-Cholesky preconditioning. Numerical tests demonstrate the effectiveness of this solution process for up to N=160000 centers in two and three dimensions.de_DE
tuhh.publisher.doi10.1016/j.camwa.2018.10.042-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematik E-10de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue4de_DE
tuhh.container.volume77de_DE
tuhh.container.startpage1178de_DE
tuhh.container.endpage1196de_DE
dc.identifier.scopus2-s2.0-85056636566-
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.mappedtypeArticle-
item.cerifentitytypePublications-
item.creatorGNDLe Borne, Sabine-
item.creatorGNDWende, Michael-
item.creatorOrcidLe Borne, Sabine-
item.creatorOrcidWende, Michael-
crisitem.author.deptMathematik E-10-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0002-4399-4442-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

194
Last Week
1
Last month
6
checked on Dec 9, 2022

SCOPUSTM   
Citations

4
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.