Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.232
Fulltext available Open Access
Publisher DOI: 10.1016/j.laa.2007.02.013
Title: A new justification of the Jacobi–Davidson method for large eigenproblems
Language: English
Authors: Voß, Heinrich 
Keywords: large eigenvalue problem;iterative projection method;Jacobi–Davidson method;inexact Krylov subspace methods
Issue Date: Apr-2006
Source: Preprint. Published in: Linear Algebra and its ApplicationsVolume 424, Issues 2–3, 15 July 2007, Pages 448-455
Part of Series: Preprints des Institutes für Mathematik 
Volume number: 99
Abstract (english): 
The Jacobi–Davidson method is known to converge at least quadratically if the correction equation is solved exactly, and it is common experience that the fast convergence is maintained if the correction equation is solved only approximately. In this note we derive the Jacobi–Davidson method in a way that explains this robust behavior.
URI: http://tubdok.tub.tuhh.de/handle/11420/234
DOI: 10.15480/882.232
Institute: Mathematik E-10 
Document Type: Preprint
License: In Copyright In Copyright
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
rep99.pdf139,48 kBAdobe PDFView/Open
Thumbnail
Show full item record

Page view(s)

365
Last Week
2
Last month
6
checked on Jun 21, 2021

Download(s)

201
checked on Jun 21, 2021

SCOPUSTM   
Citations

17
Last Week
0
Last month
checked on Jun 20, 2021

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.