Please use this identifier to cite or link to this item:
Fulltext available Open Access
Publisher DOI: 10.1016/j.laa.2007.02.013
Title: A new justification of the Jacobi–Davidson method for large eigenproblems
Language: English
Authors: Voß, Heinrich 
Keywords: large eigenvalue problem;iterative projection method;Jacobi–Davidson method;inexact Krylov subspace methods
Issue Date: Apr-2006
Source: Preprint. Published in: Linear Algebra and its ApplicationsVolume 424, Issues 2–3, 15 July 2007, Pages 448-455
Part of Series: Preprints des Institutes für Mathematik 
Volume number: 99
Abstract (english): The Jacobi–Davidson method is known to converge at least quadratically if the correction equation is solved exactly, and it is common experience that the fast convergence is maintained if the correction equation is solved only approximately. In this note we derive the Jacobi–Davidson method in a way that explains this robust behavior.
DOI: 10.15480/882.232
Institute: Mathematik E-10 
Type: Preprint (Vorabdruck)
License: In Copyright In Copyright
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
rep99.pdf139,48 kBAdobe PDFThumbnail
Show full item record

Page view(s)

Last Week
Last month
checked on Oct 29, 2020


checked on Oct 29, 2020

Google ScholarTM


Note about this record


Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.