TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Data science based mg corrosion engineering
 
Options

Data science based mg corrosion engineering

Citation Link: https://doi.org/10.15480/882.2265
Publikationstyp
Journal Article
Date Issued
2019-03-08
Sprache
English
Author(s)
Würger, Tim  orcid-logo
Feiler, Christian  
Musil, Félix  
Feldbauer, Gregor  orcid-logo
Höche, Daniel  
Lamaka, Sviatlana V.  
Zheludkevich, Mikhail L.  
Meißner, Robert  orcid-logo
Institut
Kunststoffe und Verbundwerkstoffe M-11  
Keramische Hochleistungswerkstoffe M-9  
Molekulardynamische Simulation weicher Materie M-EXK2  
TORE-DOI
10.15480/882.2265
TORE-URI
http://hdl.handle.net/11420/2369
Journal
Frontiers in Materials  
Volume
6
Start Page
1
End Page
9
Citation
Frontiers in Materials (6): 1-9 (2019-03-08)
Publisher DOI
10.3389/fmats.2019.00053
Scopus ID
2-s2.0-85064212974
Magnesium exhibits a high potential for a variety of applications in areas such as transport, energy and medicine. However, untreated magnesium alloys are prone to corrosion, restricting their practical application. Therefore, it is necessary to develop new approaches that can prevent or control corrosion and degradation processes in order to adapt to the specific needs of the application. One potential solution is using corrosion inhibitors which are capable of drastically reducing the degradation rate as a result of interactions with the metal surface or components of the corrosive medium. As the sheer number of potential dissolution modulators makes it impossible to obtain a detailed atomistic understanding of the inhibition mechanisms for each additive, other measures for inhibition prediction are required. For this purpose, a concept is presented that combines corrosion experiments, machine learning, data mining, density functional theory calculations and molecular dynamics to estimate corrosion inhibition properties of still untested molecules. Concomitantly, this approach will provide a deeper understanding of the fundamental mechanisms behind the prevention of corrosion events in magnesium-based materials and enables more accurate continuum corrosion simulations. The presented concept facilitates the search for molecules with a positive or negative effect on the inhibition efficiency and could thus significantly contribute to the better control of magnesium / electrolyte interface properties. © 2019 Würger, Feiler, Musil, Feldbauer, Höche, Lamaka, Zheludkevich and Meißner.
Subjects
MLE@TUHH
DDC Class
600: Technik
620: Ingenieurwissenschaften
Funding(s)
SFB 986: Teilprojekt A8 - Molekulardynamische Simulation der Selbstassemblierung von polymerbeschichteten keramischen Nanopartikeln  
SFB 986: Teilprojekt A4 - Ab-initio basierende Modellierung und Beeinflussung der mechanischen Eigenschaften von Hybridgrenzflächen  
More Funding Information
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Projektnummer 192346071-SFB 986.
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

fmats-06-00053.pdf

Size

1.03 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback