TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Model development for sc-drying kinetics of aerogels: Part 1. Monoliths and single particles
 
Options

Model development for sc-drying kinetics of aerogels: Part 1. Monoliths and single particles

Publikationstyp
Journal Article
Date Issued
2018-10
Sprache
English
Author(s)
Selmer, Ilka  orcid-logo
Behnecke, Anna-Sophia  
Quiño, Jaypee  
Braeuer, Andreas Siegfried  
Gurikov, Pavel  
Smirnova, Irina  orcid-logo
Institut
Thermische Verfahrenstechnik V-8  
TORE-URI
http://hdl.handle.net/11420/2413
Journal
The journal of supercritical fluids  
Volume
140
Start Page
415
End Page
430
Citation
Journal of Supercritical Fluids (140): 415-430 (2018-10)
Publisher DOI
10.1016/j.supflu.2018.07.002
Scopus ID
2-s2.0-85050874104
A mass transport model for the supercritical drying of gels to aerogels in different sizes (monoliths or particles) and shapes (cylinder, sphere) was developed and evaluated. Physico-chemical data for the system CO2/ethanol from literature at relevant process conditions were analyzed for a precise description of relevant physical properties. In situ measurements of the supercritical drying kinetics of gel monoliths using Raman spectroscopy were used to fit the tortuosity factor of the gel network. Apart from the fitted tortuosity factor the presented model is predictive. The model was analyzed in detail for the case of spherical gel particles. Theoretical minimal drying times were found to range in seconds for microparticles. The mass transfer step limiting the overall drying kinetics was analyzed using the dimensionless Biot number. The transition Biot number can be used for rational selection of the drying conditions (pressure, temperature, mass flow) to achieve a fast drying with low CO2 consumption.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback