Publisher DOI: 10.1098/rspa.2017.0541
Title: On the approximate solutions of fragmentation equations
Language: English
Authors: Saha, Jitraj 
Kumar, Jitendra 
Heinrich, Stefan 
Issue Date: 2018
Source: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2209 (474): 20170541- (2018)
Journal or Series Name: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 
Abstract (english): Consider the following mathematical model representing particle fragmentation in one dimension [23]; A numerical model based on the finite volume scheme is proposed to approximate the binary breakage problems. Initially, it is considered that the particle fragments are characterized by a single property, i.e. particle’s volume. We then investigate the extension of the proposed model for solving breakage problems considering two properties of particles. The efficiency to estimate the different moments with good accuracy and simple extension for multi-variable problems are the key features of the proposed method. Moreover, the mathematical convergence analysis is performed for one-dimensional problems. All mathematical findings and numerical results are validated over several test problems. For numerical validation, we propose the extension of Bourgade & Filbet (2008 Math. Comput. 77, 851–882. (doi:10.1090/S0025-5718-07-02054-6)) model for solving two-dimensional pure breakage problems. In this aspect, numerical treatment of the two-dimensional binary breakage models using finite volume methods can be treated to be the first instance in the literature.
URI: http://hdl.handle.net/11420/2436
ISSN: 1364-5021
Institute: Feststoffverfahrenstechnik und Partikeltechnologie V-3 
Type: (wissenschaftlicher) Artikel
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

12
Last Week
1
Last month
checked on May 25, 2019

Google ScholarTM

Check

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.