Publisher DOI: 10.1088/1361-6560/aab136
Title: Magnetic particle imaging for in vivo blood flow velocity measurements in mice
Language: English
Authors: Kaul, Michael 
Salamon, Johannes 
Knopp, Tobias 
Ittrich, Harald 
Adam, Gerhard 
Weller, Horst 
Jung, Caroline 
Keywords: Animals;Blood Flow Velocity;Image Processing, Computer-Assisted;Imaging, Three-Dimensional;Magnetic Resonance Imaging;Mice;Molecular Imaging;Hemodynamics;Phantoms, Imaging
Issue Date: 16-Mar-2018
Source: Physics in medicine and biology 6 (63): 064001- (2018)
Journal or Series Name: Physics in medicine and biology 
Abstract (english): Magnetic particle imaging (MPI) is a new imaging technology. It is a potential candidate to be used for angiographic purposes, to study perfusion and cell migration. The aim of this work was to measure velocities of the flowing blood in the inferior vena cava of mice, using MPI, and to evaluate it in comparison with magnetic resonance imaging (MRI). A phantom mimicking the flow within the inferior vena cava with velocities of up to 21 cm s-1 was used for the evaluation of the applied analysis techniques. Time-density and distance-density analyses for bolus tracking were performed to calculate flow velocities. These findings were compared with the calibrated velocities set by a flow pump, and it can be concluded that velocities of up to 21 cm s-1 can be measured by MPI. A time-density analysis using an arrival time estimation algorithm showed the best agreement with the preset velocities. In vivo measurements were performed in healthy FVB mice (n  =  10). MRI experiments were performed using phase contrast (PC) for velocity mapping. For MPI measurements, a standardized injection of a superparamagnetic iron oxide tracer was applied. In vivo MPI data were evaluated by a time-density analysis and compared to PC MRI. A Bland-Altman analysis revealed good agreement between the in vivo velocities acquired by MRI of 4.0  ±  1.5 cm s-1 and those measured by MPI of 4.8  ±  1.1 cm s-1. Magnetic particle imaging is a new tool with which to measure and quantify flow velocities. It is fast, radiation-free, and produces 3D images. It therefore offers the potential for vascular imaging.
URI: http://hdl.handle.net/11420/2514
ISSN: 0031-9155
Institute: Biomedizinische Bildgebung E-5 
Type: (wissenschaftlicher) Artikel
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

26
Last Week
0
Last month
11
checked on Jul 17, 2019

Google ScholarTM

Check

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.