TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Effect of fabric architecture, compaction and permeability on through thickness thermoplastic melt impregnation
 
Options

Effect of fabric architecture, compaction and permeability on through thickness thermoplastic melt impregnation

Publikationstyp
Journal Article
Date Issued
2019-07
Sprache
English
Author(s)
Studer, Julia  
Dransfeld, Clemens  
Jauregui Cano, Jon  
Keller, Andre  
Wink, Marianne  
Masania, Kunal  
Fiedler, Bodo  orcid-logo
Institut
Kunststoffe und Verbundwerkstoffe M-11  
TORE-URI
http://hdl.handle.net/11420/2550
Journal
Composites Part A: Applied Science and Manufacturing  
Volume
122
Start Page
45
End Page
53
Citation
Composites Part A: Applied Science and Manufacturing (122): 45-53 (2019-07)
Publisher DOI
10.1016/j.compositesa.2019.04.008
Scopus ID
2-s2.0-85064446423
To reduce the cycle time of structural, automotive thermoplastic composites, we investigated the potential of direct thermoplastic melt impregnation of glass fabrics using an injection moulding process. At the high pressures that occur during the process, the effect of the fabric architecture on the impregnation, compaction, volume fraction and permeability of two unidirectional fabrics was studied. Using impregnation experiments with a low viscosity PA6 melt, we identified a favourable processing window resulting in an impregnation time of 5 min. The impregnation experiments with thermoplastic melts demonstrate that textile architectures promoting dual scale flow during impregnation are favourable for complete filling. Based on our findings, thermoplastic compression resin transfer moulding is an efficient processing route for automated production of composite parts with a high fibre volume fraction, if the fabric architecture is adapted for higher processing pressures and by fully utilising dual scale flow.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback