Publisher DOI: 10.1021/acsphotonics.8b00473
Title: Limit of efficiency of generation of hot electrons in metals and their injection inside a semiconductor using a semiclassical approach
Language: English
Authors: Blandre, E. 
Jalas, Dirk 
Petrov, Alexander 
Eich, Manfred 
Issue Date: 19-Sep-2018
Source: ACS Photonics 9 (5): 3613-3620 (2018-09-19)
Journal or Series Name: ACS photonics 
Abstract (english): Hot electron generation in a metal and injection into a semiconductor is a crucial mechanism to convert sub band gap photons into free electrical charges inside a semiconductor. This process is of paramount importance for solar photocatalysis since the semiconductors involved often have a band gap too large for direct excitation with sun light, thus requiring a carrier transfer from an adjacent effective absorber, which in our case is a metal, to the semiconductor in order to initiate the envisaged photochemical reactions. Single interaction of a hot electron with a metal-semiconductor boundary is described by Fowler's law. In nanometer sized metals hot electrons, before they lose their energy, can interact several times with the boundary, which increases the probability of injection. To understand the efficiency of this process, to find ways to optimize it, and to determine its limits, an electron transport model based on a Monte Carlo approach is proposed. The numerical calculations provide an in-depth understanding of the impact of size and shape of the metal on the injection efficiency. Values are obtained that exceed the usual efficiency limits described by Fowler's theory.
URI: http://hdl.handle.net/11420/2568
ISSN: 2330-4022
Institute: Optische und Elektronische Materialien E-12 
Type: (wissenschaftlicher) Artikel
Funded by: DFG via Collaborative Research Centre SFB 986 “Tailor-Made Multi-Scale Materials Systems”, Project C1.
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

10
Last Week
1
Last month
checked on May 25, 2019

Google ScholarTM

Check

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.