Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2234
DC FieldValueLanguage
dc.contributor.authorChabchoub, Amin-
dc.contributor.authorMozumi, Kento-
dc.contributor.authorHoffmann, Norbert-
dc.contributor.authorBabanin, Alexander V.-
dc.contributor.authorToffoli, Alessandro-
dc.contributor.authorSteer, James N.-
dc.contributor.authorBremer, Ton S. van den-
dc.contributor.authorAkhmediev, Nail N.-
dc.contributor.authorOnorato, Miguel-
dc.contributor.authorWaseda, Takuji-
dc.date.accessioned2019-05-02T08:52:52Z-
dc.date.available2019-05-02T08:52:52Z-
dc.date.issued2019-04-26-
dc.identifier.citationProceedings of the National Academy of Sciences of the United States of America: 116.2019, issue 20, pp.9759-9763de_DE
dc.identifier.issn1091-6490de_DE
dc.identifier.urihttp://hdl.handle.net/11420/2574-
dc.description.abstractSolitons and breathers are nonlinear modes that exist in a wide range of physical systems. They are fundamental solutions of a number of nonlinear wave evolution equations, including the unidirectional nonlinear Schrödinger equation (NLSE). We report the observation of slanted solitons and breathers propagating at an angle with respect to the direction of propagation of the wave field. As the coherence is diagonal, the scale in the crest direction becomes finite; consequently, beam dynamics form. Spatiotemporal measurements of the water surface elevation are obtained by stereo-reconstructing the positions of the floating markers placed on a regular lattice and recorded with two synchronized high-speed cameras. Experimental results, based on the predictions obtained from the (2D + 1) hyperbolic NLSE equation, are in excellent agreement with the theory. Our study proves the existence of such unique and coherent wave packets and has serious implications for practical applications in optical sciences and physical oceanography. Moreover, unstable wave fields in this geometry may explain the formation of directional large-amplitude rogue waves with a finite crest length within a wide range of nonlinear dispersive media, such as Bose-Einstein condensates, solids, plasma, hydrodynamics, and optics.en
dc.description.sponsorshipA.C. acknowledges support from the Japan Society for the Promotion of Science (JSPS). A.V.B. acknowledges support from the Australian Research Council (Discovery Projects DP170101328). J.N.S. acknowledges an Engineering and Physical Sciences Research Council studentship (1770088). T.S.v.d.B. acknowledges a Royal Academy of Engineering Research Fellowship. N.A. acknowledges the Australian Research Council for financial support. M.O. has been funded by Progetto di Ricerca d’Ateneo Grant CSTO160004. M.O. was supported by the “Departments of Excellence 2018–2022” grant awarded by the Italian Ministry of Education, University and Research (L.232/2016). The experiments at the University of Tokyo were supported by KAKENHI of JSPS.de_DE
dc.language.isoende_DE
dc.relation.ispartofProceedings of the National Academy of Sciences of the United States of Americade_DE
dc.rightsCC BY 4.0de_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.subjectdirectional localizationsde_DE
dc.subjectextreme eventsde_DE
dc.subjectnonlinear wavesde_DE
dc.subjectsolitonsde_DE
dc.subject.ddc530: Physikde_DE
dc.subject.ddc600: Technikde_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleDirectional soliton and breather beamsde_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-882.033666-
dc.identifier.doi10.15480/882.2234-
dc.type.diniarticle-
dc.subject.ddccode530-
dc.subject.ddccode620-
dc.subject.ddccode600-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.033666-
tuhh.oai.showtruede_DE
tuhh.abstract.englishSolitons and breathers are nonlinear modes that exist in a wide range of physical systems. They are fundamental solutions of a number of nonlinear wave evolution equations, including the unidirectional nonlinear Schrödinger equation (NLSE). We report the observation of slanted solitons and breathers propagating at an angle with respect to the direction of propagation of the wave field. As the coherence is diagonal, the scale in the crest direction becomes finite; consequently, beam dynamics form. Spatiotemporal measurements of the water surface elevation are obtained by stereo-reconstructing the positions of the floating markers placed on a regular lattice and recorded with two synchronized high-speed cameras. Experimental results, based on the predictions obtained from the (2D + 1) hyperbolic NLSE equation, are in excellent agreement with the theory. Our study proves the existence of such unique and coherent wave packets and has serious implications for practical applications in optical sciences and physical oceanography. Moreover, unstable wave fields in this geometry may explain the formation of directional large-amplitude rogue waves with a finite crest length within a wide range of nonlinear dispersive media, such as Bose-Einstein condensates, solids, plasma, hydrodynamics, and optics.de_DE
tuhh.publisher.doi10.1073/pnas.1821970116-
tuhh.publication.instituteStrukturdynamik M-14de_DE
tuhh.identifier.doi10.15480/882.2234-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanM-14de
tuhh.institute.englishStrukturdynamik M-14de_DE
tuhh.gvk.hasppnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/de_DE
dc.type.casraiJournal Article-
tuhh.container.issue20de_DE
tuhh.container.volume116de_DE
tuhh.container.startpage9759de_DE
tuhh.container.endpage9763de_DE
dc.rights.nationallicensefalsede_DE
item.fulltextWith Fulltext-
item.creatorGNDChabchoub, Amin-
item.creatorGNDMozumi, Kento-
item.creatorGNDHoffmann, Norbert-
item.creatorGNDBabanin, Alexander V.-
item.creatorGNDToffoli, Alessandro-
item.creatorGNDSteer, James N.-
item.creatorGNDBremer, Ton S. van den-
item.creatorGNDAkhmediev, Nail N.-
item.creatorGNDOnorato, Miguel-
item.creatorGNDWaseda, Takuji-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidChabchoub, Amin-
item.creatorOrcidMozumi, Kento-
item.creatorOrcidHoffmann, Norbert-
item.creatorOrcidBabanin, Alexander V.-
item.creatorOrcidToffoli, Alessandro-
item.creatorOrcidSteer, James N.-
item.creatorOrcidBremer, Ton S. van den-
item.creatorOrcidAkhmediev, Nail N.-
item.creatorOrcidOnorato, Miguel-
item.creatorOrcidWaseda, Takuji-
item.cerifentitytypePublications-
item.grantfulltextopen-
crisitem.author.deptMechanik und Meerestechnik M-13-
crisitem.author.deptStrukturdynamik M-14-
crisitem.author.orcid0000-0003-2074-3170-
crisitem.author.orcid0000-0003-3112-6856-
crisitem.author.orcid0000-0003-3112-6856-
crisitem.author.orcid0000-0001-6154-3357-
crisitem.author.orcid0000-0001-7294-8958-
crisitem.author.orcid0000-0001-9141-2147-
crisitem.author.orcid0000-0001-5403-5303-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
2019_PNAS_Directional Solitons and Breather Beams.pdf1,57 MBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

130
Last Week
1
Last month
1
checked on Jul 16, 2020

Download(s)

92
checked on Jul 16, 2020

Google ScholarTM

Check

Note about this record

Export

This item is licensed under a Creative Commons License Creative Commons