Verlagslink DOI: 10.1109/ISEMC.2018.8393773
Titel: Feasibility of uncertainty quantification for power distribution network modeling using PCE and a contour integral method
Sprache: Englisch
Autor/Autorin: Dahl, David 
Yildiz, Ömer Faruk 
Frick, Eduard 
Seifert, Christian  
Lindner, Marko  
Schuster, Christian 
Erscheinungs­datum: 22-Jun-2018
Quellenangabe: 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC 2018)
Zusammenfassung (englisch): 
This work presents the modeling of the printed circuit board part of power distribution networks (PDNs) and example results for the uncertainty quantification for the magnitude of the corresponding impedance. Variability is considered for several parameters, including geometry, material properties, and the models of the decoupling capacitors. For the computation of the parallel plate impedance an efficient and accurate two-dimensional contour integral method (CIM) is applied together with models for the wave number for the complete frequency range of interest. Polynomial chaos expansion (PCE) is used in the non-intrusive form of stochastic testing for the uncertainty quantification and Monte Carlo simulations are used for the validation of these results. To our knowledge this combination of methods represents the first application of CIM and PCE to the modeling of PDNs. The PCE is found to be numerically more efficient than Monte Carlo in cases where parameters are varied that have an influence on the parallel plate impedance. It can be less efficient for variation of only the models of decoupling capacitors. It is applicable if not too many parameters are varied at a time and accurate if resonance effects due to low-loss substrate materials and components are not too pronounced at the considered frequency.
Konferenz: 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility, EMC/APEMC 2018 
ISBN: 978-150905997-3
Institut: Theoretische Elektrotechnik E-18 
Mathematik E-10 
Dokumenttyp: Kapitel (Konferenzband)
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige


Letzte Woche
Letzten Monat
checked on 01.10.2022


Letzte Woche
Letzten Monat
checked on 30.06.2022

Google ScholarTM


Volltext ergänzen

Feedback zu diesem Datensatz

Diesen Datensatz zitieren


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.