TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Comparison of two algorithms for signal detection in pulsarbased FSR
 
Options

Comparison of two algorithms for signal detection in pulsarbased FSR

Publikationstyp
Conference Paper
Date Issued
2018-08-27
Sprache
English
Author(s)
Kabakchiev, Hristo  
Behar, Vera  
Garvanov, Iwan  
Kabakchieva, Dorina  
Kabakchiev, Avgust  
Rohling, Hermann  
Bentum, Marc  
Fernandes, Jorge  
Institut
Nachrichtentechnik E-8  
TORE-URI
http://hdl.handle.net/11420/2594
Start Page
1
End Page
9
Citation
19th International Radar Symposium (IRS): 1-9 (2018-08-27)
Contribution to Conference
19th International Radar Symposium (IRS 2018)  
Publisher DOI
10.23919/IRS.2018.8448192
Scopus ID
2-s2.0-85053605202
Publisher
IEEE
ISBN
978-3-7369-9545-1
978-1-5386-1269-9
978-3-7369-9825-4
Two detection algorithms (heuristic and CFAR) for target detection in pulsar FSR are analyzed using the simulation approach. The simulation results are verified by processing of the experimental data obtained by the radio observatory Dwingeloo in the Netherlands. The simulation and experimental results proved that the CFAR detection algorithm is more effective than the heuristic algorithm and can be successfully used in a pulsar FSR system for protection of air space from unwanted air objects.
DDC Class
600: Technology
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback