Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2256
DC FieldValueLanguage
dc.contributor.authorScheider, Ingo-
dc.contributor.authorXiao, Tao-
dc.contributor.authorYilmaz, Ezgi D.-
dc.contributor.authorSchneider, Gerold A.-
dc.contributor.authorHuber, Norbert-
dc.contributor.authorBargmann, Swantje-
dc.date.accessioned2019-06-04T09:31:32Z-
dc.date.available2019-06-04T09:31:32Z-
dc.date.issued2015-12-
dc.identifier.citationActa biomaterialia (15): 244-253 (2015)de_DE
dc.identifier.issn1742-7061de_DE
dc.identifier.urihttp://hdl.handle.net/11420/2669-
dc.description.abstractDental enamel is a highly anisotropic and heterogeneous material, which exhibits an optimal reliability with respect to the various loads occurring over years. In this work, enamel's microstructure of parallel aligned rods of mineral fibers is modeled and mechanical properties are evaluated in terms of strength and toughness with the help of a multiscale modeling method. The established model is validated by comparing it with the stress-strain curves identified by microcantilever beam experiments extracted from these rods. Moreover, in order to gain further insight in the damage-tolerant behavior of enamel, the size of crystallites below which the structure becomes insensitive to flaws is studied by a microstructural finite element model. The assumption regarding the fiber strength is verified by a numerical study leading to accordance of fiber size and flaw tolerance size, and the debonding strength is estimated by optimizing the failure behavior of the microstructure on the hierarchical level above the individual fibers. Based on these well-grounded properties, the material behavior is predicted well by homogenization of a representative unit cell including damage, taking imperfections (like microcracks in the present case) into account.en
dc.language.isoende_DE
dc.publisherElsevierde_DE
dc.relation.ispartofActa biomaterialiade_DE
dc.rightsCC BY-NC-ND 3.0de_DE
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/de_DE
dc.subjectdental enamelde_DE
dc.subjectmechanical characterizationde_DE
dc.subjectmicromechanical modelingde_DE
dc.subjecthierarchical materialde_DE
dc.subjecthomogenizationde_DE
dc.subject.ddc500: Naturwissenschaftende_DE
dc.titleDamage modeling of small-scale experiments on dental enamel with hierarchical microstructurede_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-882.034877-
dc.identifier.doi10.15480/882.2256-
dc.type.diniarticle-
dc.subject.ddccode500-
dc.subject.ddccode570-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.034877-
tuhh.oai.showtruede_DE
tuhh.abstract.englishDental enamel is a highly anisotropic and heterogeneous material, which exhibits an optimal reliability with respect to the various loads occurring over years. In this work, enamel's microstructure of parallel aligned rods of mineral fibers is modeled and mechanical properties are evaluated in terms of strength and toughness with the help of a multiscale modeling method. The established model is validated by comparing it with the stress-strain curves identified by microcantilever beam experiments extracted from these rods. Moreover, in order to gain further insight in the damage-tolerant behavior of enamel, the size of crystallites below which the structure becomes insensitive to flaws is studied by a microstructural finite element model. The assumption regarding the fiber strength is verified by a numerical study leading to accordance of fiber size and flaw tolerance size, and the debonding strength is estimated by optimizing the failure behavior of the microstructure on the hierarchical level above the individual fibers. Based on these well-grounded properties, the material behavior is predicted well by homogenization of a representative unit cell including damage, taking imperfections (like microcracks in the present case) into account.de_DE
tuhh.publisher.doi10.1016/j.actbio.2014.11.036-
tuhh.publication.instituteKontinuums- und Werkstoffmechanik M-15de_DE
tuhh.publication.instituteKeramische Hochleistungswerkstoffe M-9de_DE
tuhh.identifier.doi10.15480/882.2256-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanKeramische Hochleistungswerkstoffe M-9de
tuhh.institute.englishKeramische Hochleistungswerkstoffe M-9de_DE
tuhh.gvk.hasppnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.volume15de_DE
tuhh.container.startpage244de_DE
tuhh.container.endpage253de_DE
dc.relation.projectSFB 986: Teilprojekt B4 - Mikromechanisches Materialverhalten hierarchischer Werkstoffede_DE
dc.relation.projectUntersuchung des Deformations- und Bruchverhaltens der hierarchischen Ebenen von Zahnschmelzde_DE
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-84922754089-
local.status.inpressfalsede_DE
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.mappedtypeArticle-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.creatorOrcidScheider, Ingo-
item.creatorOrcidXiao, Tao-
item.creatorOrcidYilmaz, Ezgi D.-
item.creatorOrcidSchneider, Gerold A.-
item.creatorOrcidHuber, Norbert-
item.creatorOrcidBargmann, Swantje-
item.creatorGNDScheider, Ingo-
item.creatorGNDXiao, Tao-
item.creatorGNDYilmaz, Ezgi D.-
item.creatorGNDSchneider, Gerold A.-
item.creatorGNDHuber, Norbert-
item.creatorGNDBargmann, Swantje-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderid501100001659-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.project.funderrorid018mejw64-
crisitem.project.grantno192346071-
crisitem.project.grantnoSCHN 372/18-2-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.deptWerkstoffphysik und -technologie M-22-
crisitem.author.deptKontinuums- und Werkstoffmechanik M-15-
crisitem.author.orcid0000-0001-5780-6249-
crisitem.author.orcid0000-0002-4252-9207-
crisitem.author.orcid0000-0001-7403-7066-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
1-s2.0-S174270611400539X-main.pdfVerlag-PDF1,86 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

357
Last Week
1
Last month
6
checked on Feb 3, 2023

Download(s)

200
checked on Feb 3, 2023

SCOPUSTM   
Citations

26
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons