TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Learning environmental field exploration with computationally constrained underwater robots : Gaussian processes meet stochastic optimal control
 
Options

Learning environmental field exploration with computationally constrained underwater robots : Gaussian processes meet stochastic optimal control

Citation Link: https://doi.org/10.15480/882.2267
Publikationstyp
Journal Article
Date Issued
2019-05-06
Sprache
English
Author(s)
Dücker, Daniel-André 
Geist, Andreas René  
Kreuzer, Edwin  
Solowjow, Eugen  
Institut
Mechanik und Meerestechnik M-13  
TORE-DOI
10.15480/882.2267
TORE-URI
http://hdl.handle.net/11420/2711
Journal
Sensors  
Volume
19
Issue
9
Start Page
Art.-Nr. 2094
Citation
Sensors 19 (9): 2094 (2019)
Publisher DOI
10.3390/s19092094
Scopus ID
2-s2.0-85065800959
Publisher
Multidisciplinary Digital Publishing Institute
Autonomous exploration of environmental fields is one of the most promising tasks to be performed by fleets of mobile underwater robots. The goal is to maximize the information gain during the exploration process by integrating an information-metric into the path-planning and control step. Therefore, the system maintains an internal belief representation of the environmental field which incorporates previously collected measurements from the real field. In contrast to surface robots, mobile underwater systems are forced to run all computations on-board due to the limited communication bandwidth in underwater domains. Thus, reducing the computational cost of field exploration algorithms constitutes a key challenge for in-field implementations on micro underwater robot teams. In this work, we present a computationally efficient exploration algorithm which utilizes field belief models based on Gaussian Processes, such as Gaussian Markov random fields or Kalman regression, to enable field estimation with constant computational cost over time. We extend the belief models by the use of weighted shape functions to directly incorporate spatially continuous field observations. The developed belief models function as information-theoretic value functions to enable path planning through stochastic optimal control with path integrals. We demonstrate the efficiency of our exploration algorithm in a series of simulations including the case of a stationary spatio-temporal field.
Subjects
autonomous exploration
environmental field monitoring
Gaussian processes
Gaussian Markov random fields
Kalman filtering
stochastic optimal control
DDC Class
510: Mathematik
600: Technik
620: Ingenieurwissenschaften
Funding(s)
Open Access Publizieren 2018 - 2019 / TU Hamburg  
Zustandsschätzung von Strömungsfeldern und Quellfindung mittels dynamisch positionierter Unterwasser-Sensorknoten.  
Dezentrale kooperative Exploration von nichtstationären räumlich und zeitlich verteilten Feldern mit autonomen Unterwasserfahrzeugen  
More Funding Information
Deutsche Forschungsgemeinschaft (DFG)
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

sensors-19-02094.pdf

Size

2.67 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback