TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Metamaterial emitter for thermophotovoltaics stable up to 1400 °C
 
Options

Metamaterial emitter for thermophotovoltaics stable up to 1400 °C

Citation Link: https://doi.org/10.15480/882.2275
Publikationstyp
Journal Article
Date Issued
2019-05-10
Sprache
English
Author(s)
Chirumamilla, Manohar 
Krishnamurthy, Gnanavel Vaidhyanathan  
Knopp, Katrin  
Krekeler, Tobias  
Graf, Matthias  
Jalas, Dirk  
Ritter, Martin  orcid-logo
Störmer, Michael  
Petrov, Alexander  orcid-logo
Eich, Manfred  
Institut
Optische und Elektronische Materialien E-12  
Betriebseinheit Elektronenmikroskopie M-26  
TORE-DOI
10.15480/882.2275
TORE-URI
http://hdl.handle.net/11420/2734
Journal
Scientific reports  
Volume
9
Start Page
7241
Citation
Scientific Reports (9): 7241 (2019-05-10)
Publisher DOI
10.1038/s41598-019-43640-6
Scopus ID
2-s2.0-85065675392
High temperature stable selective emitters can significantly increase efficiency and radiative power in thermophotovoltaic (TPV) systems. However, optical properties of structured emitters reported so far degrade at temperatures approaching 1200 °C due to various degradation mechanisms. We have realized a 1D structured emitter based on a sputtered W-HfO 2 layered metamaterial and demonstrated desired band edge spectral properties at 1400 °C. To the best of our knowledge the temperature of 1400 °C is the highest reported for a structured emitter, so far. The spatial confinement and absence of edges stabilizes the W-HfO 2 multilayer system to temperatures unprecedented for other nanoscaled W-structures. Only when this confinement is broken W starts to show the well-known self-diffusion behavior transforming to spherical shaped W-islands. We further show that the oxidation of W by atmospheric oxygen could be prevented by reducing the vacuum pressure below 10 −5 mbar. When oxidation is mitigated we observe that the 20 nm spatially confined W films survive temperatures up to 1400 °C. The demonstrated thermal stability is limited by grain growth in HfO 2 , which leads to a rupture of the W-layers, thus, to a degradation of the multilayer system at 1450 °C.
Subjects
spectral properties
self-diffusion
DDC Class
530: Physik
Funding(s)
Open Access Publizieren 2018 - 2019 / TU Hamburg  
SFB 986, Teilproject C1 - Strukturierte Emitter für effiziente und effektive Thermophotovoltaik  
SFB 986: Zentralprojekt Z3 - Elektronenmikroskopie an multiskaligen Materialsystemen  
More Funding Information
DFG German Research Foundation, Projektnummer 192346071 – SFB 986
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

s41598-019-43640-6.pdf

Size

2.08 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback