DC FieldValueLanguage
dc.contributor.authorClemens, Dennis-
dc.contributor.authorJenssen, Matthew-
dc.contributor.authorKohayakawa, Yoshiharu-
dc.contributor.authorMorrison, Natasha-
dc.contributor.authorMota, Guilherme Oliveira-
dc.contributor.authorReding, Damian-
dc.contributor.authorRoberts, Barnaby-
dc.date.accessioned2019-06-11T16:41:09Z-
dc.date.available2019-06-11T16:41:09Z-
dc.date.issued2019-07-
dc.identifier.citationJournal of Graph Theory 3 (91): 290-299 (2019-07)de_DE
dc.identifier.issn0364-9024de_DE
dc.identifier.urihttp://hdl.handle.net/11420/2755-
dc.description.abstractGiven graphs G and H and a positive integer q, say that G is q-Ramsey for H, denoted G → (H) q , if every q-coloring of the edges of G contains a monochromatic copy of H. The size-Ramsey number (Formula presented.) of a graph H is defined to be (Formula presented.). Answering a question of Conlon, we prove that, for every fixed k, we have (Formula presented.), where P nk is the kth power of the n-vertex path P n (ie, the graph with vertex set V(P n ) and all edges u, v such that the distance between u and v in P n is at most k). Our proof is probabilistic, but can also be made constructive.en
dc.language.isoende_DE
dc.relation.ispartofJournal of graph theoryde_DE
dc.titleThe size-Ramsey number of powers of pathsde_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-882.035904-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.035904-
tuhh.abstract.englishGiven graphs G and H and a positive integer q, say that G is q-Ramsey for H, denoted G → (H) q , if every q-coloring of the edges of G contains a monochromatic copy of H. The size-Ramsey number (Formula presented.) of a graph H is defined to be (Formula presented.). Answering a question of Conlon, we prove that, for every fixed k, we have (Formula presented.), where P nk is the kth power of the n-vertex path P n (ie, the graph with vertex set V(P n ) and all edges u, v such that the distance between u and v in P n is at most k). Our proof is probabilistic, but can also be made constructive.de_DE
tuhh.publisher.doi10.1002/jgt.22432-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematik E-10de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue3de_DE
tuhh.container.volume91de_DE
tuhh.container.startpage290de_DE
tuhh.container.endpage299de_DE
item.grantfulltextnone-
item.creatorGNDClemens, Dennis-
item.creatorGNDJenssen, Matthew-
item.creatorGNDKohayakawa, Yoshiharu-
item.creatorGNDMorrison, Natasha-
item.creatorGNDMota, Guilherme Oliveira-
item.creatorGNDReding, Damian-
item.creatorGNDRoberts, Barnaby-
item.languageiso639-1other-
item.fulltextNo Fulltext-
item.creatorOrcidClemens, Dennis-
item.creatorOrcidJenssen, Matthew-
item.creatorOrcidKohayakawa, Yoshiharu-
item.creatorOrcidMorrison, Natasha-
item.creatorOrcidMota, Guilherme Oliveira-
item.creatorOrcidReding, Damian-
item.creatorOrcidRoberts, Barnaby-
crisitem.author.deptMathematik E-10-
crisitem.author.deptMathematik E-10-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

22
Last Week
1
Last month
checked on Jul 22, 2019

Google ScholarTM

Check

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.