Publisher DOI: 10.1007/s11548-018-1777-8
Title: Force estimation from OCT volumes using 3D CNNs
Language: English
Authors: Gessert, Nils 
Beringhoff, Jens 
Otte, Christoph 
Schlaefer, Alexander 
Issue Date: 1-Jul-2018
Source: International Journal of Computer Assisted Radiology and Surgery 7 (13): 1073-1082 (2018-07-01)
Journal or Series Name: International journal of computer assisted radiology and surgery 
Abstract (english): Purpose: Estimating the interaction forces of instruments and tissue is of interest, particularly to provide haptic feedback during robot-assisted minimally invasive interventions. Different approaches based on external and integrated force sensors have been proposed. These are hampered by friction, sensor size, and sterilizability. We investigate a novel approach to estimate the force vector directly from optical coherence tomography image volumes. Methods: We introduce a novel Siamese 3D CNN architecture. The network takes an undeformed reference volume and a deformed sample volume as an input and outputs the three components of the force vector. We employ a deep residual architecture with bottlenecks for increased efficiency. We compare the Siamese approach to methods using difference volumes and two-dimensional projections. Data were generated using a robotic setup to obtain ground-truth force vectors for silicon tissue phantoms as well as porcine tissue. Results: Our method achieves a mean average error of 7.7±4.3mN when estimating the force vector. Our novel Siamese 3D CNN architecture outperforms single-path methods that achieve a mean average error of 11.59±6.7mN. Moreover, the use of volume data leads to significantly higher performance compared to processing only surface information which achieves a mean average error of 24.38±22.0mN. Based on the tissue dataset, our methods shows good generalization in between different subjects. Conclusions: We propose a novel image-based force estimation method using optical coherence tomography. We illustrate that capturing the deformation of subsurface structures substantially improves force estimation. Our approach can provide accurate force estimates in surgical setups when using intraoperative optical coherence tomography.
URI: http://hdl.handle.net/11420/2789
ISSN: 1861-6410
Institute: Medizintechnische Systeme E-1 
Type: (wissenschaftlicher) Artikel
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

6
checked on Jun 16, 2019

Google ScholarTM

Check

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.