TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Fluoride removal from water by composite Al/Fe/Si/Mg pre-polymerized coagulants: Characterization and application
 
Options

Fluoride removal from water by composite Al/Fe/Si/Mg pre-polymerized coagulants: Characterization and application

Publikationstyp
Journal Article
Date Issued
2019-09
Sprache
English
Author(s)
Tolkou, Athanasia K.  
Mitrakas, Manassis  
Katsoyiannis, Ioannis A.  
Ernst, Mathias  orcid-logo
Zouboulis, Anastasios I.  
Institut
Wasserressourcen und Wasserversorgung B-11  
TORE-URI
http://hdl.handle.net/11420/2797
Journal
Chemosphere  
Volume
231
Start Page
528
End Page
537
Citation
Chemosphere (231): 528-537 (2019-09)
Publisher DOI
10.1016/j.chemosphere.2019.05.183
Scopus ID
2-s2.0-85066451460
Fluoride, an anionic pollutant, is possibly to be found in excessive concentrations especially in groundwaters and can show detrimental effects on human health, in concentrations higher than the commonly applied legislation limit of 1.5 mg/L The most commonly applied method for water de-fluoridation is performed by Al-based coagulants, which however presents some important limitations, such as the applied relatively high dosage, producing rather excessive amounts of chemical sludge. In this study, the use of novel pre-polymerized Al-based coagulants was examined, regarding their efficiency towards fluoride removal, as compared with the conventionally applied AlCl3. The novel coagulants were characterized by measuring the main physico-chemical properties, the aluminum species distribution, the zeta potential, the particles' size distribution and the produced flocs’ sizes. The results showed that the Mg-containing coagulant (PSiFAC-Mg30-10-15) was the most efficient, when applied in pH values relevant to fluoride-containing groundwaters; it was also the only coagulant, which increases its efficiency at pH values > 7. The uptake capacity of coagulants, regarding fluoride, to reach the residual/equilibrium concentration limit of 1.5 mg F/L (Q1.5-value) at the pH value 7.0 ± 0.1 were found 170, 134 and 94 mg F/g Al for the cases of PSiFAC-Mg30-10-15, AlCl3·6H2O and PSiFAC-Na1.5-10-15, respectively. Accordingly, at the pH value 7.8 ± 0.2 the Q1.5-values were found 189, 118 and 41 mg F/g Al for the same coagulants; whereas considering the residual aluminum concentration this was ranged at 15 ± 5, 25 ± 5 and 30 ± 5 μg Al/L, respectively. In addition, (beneficial) increase of residual magnesium concentration, when applying the coagulant PSiFAC-Mg30-10-15 was 15 ± 5 mg/L.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback