Verlagslink DOI: 10.1002/jgt.22248
Titel: On minimum bisection and related cut problems in trees and tree-like graphs
Sprache: Englisch
Autor/Autorin: Fernandes, Cristina G. 
Schmidt, Tina Janne 
Taraz, Anusch 
Erscheinungs­datum: Okt-2018
Quellenangabe: Journal of Graph Theory 2 (89): 214-245 (2018-10)
Zusammenfassung (englisch): 
Minimum bisection denotes the NP-hard problem to partition the vertex set of a graph into two sets of equal sizes while minimizing the width of the bisection, which is defined as the number of edges between these two sets. It is intuitively clear that graphs with a somewhat linear structure are easy to bisect, and therefore our aim is to relate the minimum bisection width of a bounded-degree graph G to a parameter that measures the similarity between G and a path. First, for trees, we use the diameter and show that the minimum bisection width of every tree T on n vertices satisfies MinBis (T)≤8nΔ(T)/ diam (T). Second, we generalize this to arbitrary graphs with a given tree decomposition (T,X) and give an upper bound on the minimum bisection width that depends on how close (T,X) is to a path decomposition. Moreover, we show that a bisection satisfying our general bound can be computed in time proportional to the encoding length of the tree decomposition when the latter is provided as input.
URI: http://hdl.handle.net/11420/2827
ISSN: 0364-9024
Zeitschrift: Journal of graph theory 
Institut: Mathematik E-10 
Dokumenttyp: Artikel/Aufsatz
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige

Seitenansichten

136
Letzte Woche
1
Letzten Monat
1
checked on 04.10.2022

SCOPUSTM   
Zitate

1
Letzte Woche
0
Letzten Monat
0
checked on 30.06.2022

Google ScholarTM

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.