TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. On minimum bisection and related cut problems in trees and tree-like graphs
 
Options

On minimum bisection and related cut problems in trees and tree-like graphs

Publikationstyp
Journal Article
Date Issued
2018-10
Sprache
English
Author(s)
Fernandes, Cristina G.  
Schmidt, Tina Janne  
Taraz, Anusch  
Institut
Mathematik E-10  
TORE-URI
http://hdl.handle.net/11420/2827
Journal
Journal of graph theory  
Volume
89
Issue
2
Start Page
214
End Page
245
Citation
Journal of Graph Theory 2 (89): 214-245 (2018-10)
Publisher DOI
10.1002/jgt.22248
Scopus ID
2-s2.0-85045856980
Minimum bisection denotes the NP-hard problem to partition the vertex set of a graph into two sets of equal sizes while minimizing the width of the bisection, which is defined as the number of edges between these two sets. It is intuitively clear that graphs with a somewhat linear structure are easy to bisect, and therefore our aim is to relate the minimum bisection width of a bounded-degree graph G to a parameter that measures the similarity between G and a path. First, for trees, we use the diameter and show that the minimum bisection width of every tree T on n vertices satisfies MinBis (T)≤8nΔ(T)/ diam (T). Second, we generalize this to arbitrary graphs with a given tree decomposition (T,X) and give an upper bound on the minimum bisection width that depends on how close (T,X) is to a path decomposition. Moreover, we show that a bisection satisfying our general bound can be computed in time proportional to the encoding length of the tree decomposition when the latter is provided as input.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize