TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Enhanced performance of catalyst pellets for methane dry reforming by engineering pore network structure
 
Options

Enhanced performance of catalyst pellets for methane dry reforming by engineering pore network structure

Publikationstyp
Journal Article
Date Issued
2019-10
Sprache
English
Author(s)
Liu, Xinlei  
Wang, Hailang  
Ye, Guanghua  
Zhou, Xinggui  
Keil, Frerich 
Institut
Chemische Reaktionstechnik V-2  
TORE-URI
http://hdl.handle.net/11420/2858
Journal
Chemical engineering journal  
Volume
373
Start Page
1389
End Page
1396
Citation
Chemical Engineering Journal (373): 1389-1396 (2019-10)
Publisher DOI
10.1016/j.cej.2019.03.125
Scopus ID
2-s2.0-85063161781
Enhancing the utilization and activity of catalytic materials is crucial in designing catalysts for industrial use. This work achieves these performance enhancements in Rh/Al2O3 catalyzed dry reforming of methane (DRM) at the catalyst pellet level, through engineering catalyst pore network structure. A continuum model, describing the coupled mass, heat transfer and reactions, is developed to optimize the monodisperse and bidisperse catalyst pellets under different temperatures, pressures, and CH4/CO2 ratios. The results show that the preferred pore diameter for the monodisperse catalyst and macropore diameter for the bidisperse catalyst are all 300 nm, above which Knudsen diffusion is not important. Besides, the optimal porosities for the monodisperse and bidisperse catalysts are in the ranges of 0.51–0.59 and 0.61–0.64, which is the result of the trade-off between diffusion and reaction. The optimal bidisperse catalyst can be 56–175% more active but uses 10–18% less catalyst materials when compared to the optimal monodisperse catalyst with the same mesopore size, indicating the great advantage of introducing the optimal macroporosity into mesoporous catalyst pellets for DRM. These results should serve to guide the rational design of industrial catalyst pellets.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback