Publisher DOI: 10.1016/j.cej.2019.03.125
Title: Enhanced performance of catalyst pellets for methane dry reforming by engineering pore network structure
Language: English
Authors: Liu, Xinlei 
Wang, Hailang 
Ye, Guanghua 
Zhou, Xinggui 
Keil, Frerich 
Issue Date: Oct-2019
Source: Chemical Engineering Journal (373): 1389-1396 (2019-10)
Journal: Chemical engineering journal 
Abstract (english): 
Enhancing the utilization and activity of catalytic materials is crucial in designing catalysts for industrial use. This work achieves these performance enhancements in Rh/Al2O3 catalyzed dry reforming of methane (DRM) at the catalyst pellet level, through engineering catalyst pore network structure. A continuum model, describing the coupled mass, heat transfer and reactions, is developed to optimize the monodisperse and bidisperse catalyst pellets under different temperatures, pressures, and CH4/CO2 ratios. The results show that the preferred pore diameter for the monodisperse catalyst and macropore diameter for the bidisperse catalyst are all 300 nm, above which Knudsen diffusion is not important. Besides, the optimal porosities for the monodisperse and bidisperse catalysts are in the ranges of 0.51–0.59 and 0.61–0.64, which is the result of the trade-off between diffusion and reaction. The optimal bidisperse catalyst can be 56–175% more active but uses 10–18% less catalyst materials when compared to the optimal monodisperse catalyst with the same mesopore size, indicating the great advantage of introducing the optimal macroporosity into mesoporous catalyst pellets for DRM. These results should serve to guide the rational design of industrial catalyst pellets.
ISSN: 1385-8947
Institute: Chemische Reaktionstechnik V-2 
Document Type: Article
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

Last Week
Last month
checked on Dec 5, 2021


Last Week
Last month
checked on Dec 4, 2021

Google ScholarTM


Add Files to Item

Note about this record

Cite this record


Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.