Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2335
Publisher DOI: 10.3390/ma12132178
Title: Numerical investigation of polymer coated nanoporous gold
Language: English
Authors: Gnegel, Stephan 
Li, Jie 
Mameka, Nadiia 
Huber, Norbert 
Düster, Alexander 
Keywords: nanoporous gold;polymer coating;finite cell method;window method
Issue Date: 6-Jul-2019
Publisher: Multidisciplinary Digital Publishing Institute
Source: Materials 12 (13): 2178 (2019)
Journal or Series Name: Materials 
Abstract (english): Nanoporous metals represent a fascinating class of materials. They consist of a bi-continuous three-dimensional network of randomly intersecting pores and ligaments where the ligaments form the skeleton of the structure. The open-pore structure allows for applying a thin electrolytic coating on the ligaments. In this paper, we will investigate the stiffening effect of a polymer coating numerically. Since the coating adds an additional difficulty for the discretization of the microstructure by finite elements, we apply the finite cell method. This allows for deriving a mesh in a fully automatic fashion from the high resolution 3D voxel model stemming from the 3D focused ion beam-scanning electron microscope tomography data of nanoporous gold. By manipulating the voxel model in a straightforward way, we add a thin polymer layer of homogeneous thickness numerically and study its effect on the macroscopic elastic properties systematically. In order to lower the influence of the boundary conditions on the results, the window method, which is known from homogenization procedures, is applied. In the second part of the paper, we fill the gap between numerical simulations and experimental investigations and determine real material properties of an electrolytic applied polypyrrole coating by inverse computations. The simulations provide an estimate for the mechanical properties of the ligaments and the polymeric coating and are in accordance with experimental data.
URI: http://hdl.handle.net/11420/2931
DOI: 10.15480/882.2335
ISSN: 1996-1944
Other Identifiers: doi: 10.3390/ma12132178
Institute: Konstruktion und Festigkeit von Schiffen M-10 
Werkstoffphysik und -technologie M-22 
Type: (wissenschaftlicher) Artikel
Funded by: Deutsche Forschungsgemeinschaft (DFG)
Project: SFB 986 Tailor-Made Multi-Scale Materials Sytems M3 
Open Access Publizieren 2018 - 2019 / TU Hamburg 
Appears in Collections:Publications with fulltext (tub.dok)

Files in This Item:
File Description SizeFormat
materials-12-02178-v2.pdf4,96 MBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

110
Last Week
10
Last month
33
checked on Oct 18, 2019

Download(s)

51
checked on Oct 18, 2019

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons