DC FieldValueLanguage
dc.contributor.authorBeckus, Siegfried-
dc.contributor.authorLenz, Daniel-
dc.contributor.authorLindner, Marko-
dc.contributor.authorSeifert, Christian-
dc.date.accessioned2019-07-12T15:12:52Z-
dc.date.available2019-07-12T15:12:52Z-
dc.date.issued2018-05-01-
dc.identifier.citationProceedings of the Edinburgh Mathematical Society 2 (61): 371-386 (2018-05-01)de_DE
dc.identifier.issn0013-0915de_DE
dc.identifier.urihttp://hdl.handle.net/11420/2942-
dc.description.abstractWe consider equivariant continuous families of discrete one-dimensional operators over arbitrary dynamical systems. We introduce the concept of a pseudo-ergodic element of a dynamical system. We then show that all operators associated to pseudo-ergodic elements have the same spectrum and that this spectrum agrees with their essential spectrum. As a consequence we obtain that the spectrum is constant and agrees with the essential spectrum for all elements in the dynamical system if minimality holds.en
dc.language.isoende_DE
dc.relation.ispartofProceedings of the Edinburgh Mathematical Societyde_DE
dc.titleNote on Spectra of Non-Selfadjoint Operators over Dynamical Systemsde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishWe consider equivariant continuous families of discrete one-dimensional operators over arbitrary dynamical systems. We introduce the concept of a pseudo-ergodic element of a dynamical system. We then show that all operators associated to pseudo-ergodic elements have the same spectrum and that this spectrum agrees with their essential spectrum. As a consequence we obtain that the spectrum is constant and agrees with the essential spectrum for all elements in the dynamical system if minimality holds.de_DE
tuhh.publisher.doi10.1017/S0013091517000086-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematik E-10de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue2de_DE
tuhh.container.volume61de_DE
tuhh.container.startpage371de_DE
tuhh.container.endpage386de_DE
dc.identifier.scopus2-s2.0-85051258121-
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.languageiso639-1en-
item.grantfulltextnone-
item.creatorOrcidBeckus, Siegfried-
item.creatorOrcidLenz, Daniel-
item.creatorOrcidLindner, Marko-
item.creatorOrcidSeifert, Christian-
item.mappedtypeArticle-
item.creatorGNDBeckus, Siegfried-
item.creatorGNDLenz, Daniel-
item.creatorGNDLindner, Marko-
item.creatorGNDSeifert, Christian-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptMathematik E-10-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-0724-9258-
crisitem.author.orcid0000-0001-8483-2944-
crisitem.author.orcid0000-0001-9182-8687-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

127
Last Week
1
Last month
2
checked on Aug 8, 2022

SCOPUSTM   
Citations

2
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.