Verlagslink DOI: 10.1016/j.jctb.2017.12.002
Titel: Logical limit laws for minor-closed classes of graphs
Sprache: Englisch
Autor/Autorin: Heinig, Peter 
Müller, Tobias 
Noy, Marc 
Taraz, Anusch 
Erscheinungs­datum: Mai-2018
Quellenangabe: Journal of Combinatorial Theory. Series B (130): 158-206 (2018-05)
Zusammenfassung (englisch): 
Let G be an addable, minor-closed class of graphs. We prove that the zero-one law holds in monadic second-order logic (MSO) for the random graph drawn uniformly at random from all connected graphs in G on n vertices, and the convergence law in MSO holds if we draw uniformly at random from all graphs in G on n vertices. We also prove analogues of these results for the class of graphs embeddable on a fixed surface, provided we restrict attention to first order logic (FO). Moreover, the limiting probability that a given FO sentence is satisfied is independent of the surface S. We also prove that the closure of the set of limiting probabilities is always the finite union of at least two disjoint intervals, and that it is the same for FO and MSO. For the classes of forests and planar graphs we are able to determine the closure of the set of limiting probabilities precisely. For planar graphs it consists of exactly 108 intervals, each of the same length ≈5.39⋅10 −6 . Finally, we analyse examples of non-addable classes where the behaviour is quite different. For instance, the zero-one law does not hold for the random caterpillar on n vertices, even in FO.
URI: http://hdl.handle.net/11420/2945
ISSN: 0095-8956
Zeitschrift: Journal of Combinatorial Theory. Series B 
Institut: Mathematik E-10 
Dokumenttyp: Artikel/Aufsatz
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige

Seitenansichten

189
Letzte Woche
2
Letzten Monat
2
checked on 04.10.2022

SCOPUSTM   
Zitate

9
Letzte Woche
0
Letzten Monat
0
checked on 30.06.2022

Google ScholarTM

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.