Publisher DOI: 10.1016/j.jctb.2017.12.002
Title: Logical limit laws for minor-closed classes of graphs
Language: English
Authors: Heinig, Peter 
Müller, Tobias 
Noy, Marc 
Taraz, Anusch 
Issue Date: May-2018
Source: Journal of Combinatorial Theory. Series B (130): 158-206 (2018-05)
Abstract (english): 
Let G be an addable, minor-closed class of graphs. We prove that the zero-one law holds in monadic second-order logic (MSO) for the random graph drawn uniformly at random from all connected graphs in G on n vertices, and the convergence law in MSO holds if we draw uniformly at random from all graphs in G on n vertices. We also prove analogues of these results for the class of graphs embeddable on a fixed surface, provided we restrict attention to first order logic (FO). Moreover, the limiting probability that a given FO sentence is satisfied is independent of the surface S. We also prove that the closure of the set of limiting probabilities is always the finite union of at least two disjoint intervals, and that it is the same for FO and MSO. For the classes of forests and planar graphs we are able to determine the closure of the set of limiting probabilities precisely. For planar graphs it consists of exactly 108 intervals, each of the same length ≈5.39⋅10 −6 . Finally, we analyse examples of non-addable classes where the behaviour is quite different. For instance, the zero-one law does not hold for the random caterpillar on n vertices, even in FO.
ISSN: 0095-8956
Journal: Journal of Combinatorial Theory. Series B 
Institute: Mathematik E-10 
Document Type: Article
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

Last Week
Last month
checked on Jul 5, 2022


Last Week
Last month
checked on Jun 30, 2022

Google ScholarTM


Add Files to Item

Note about this record

Cite this record


Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.