Verlagslink DOI: 10.1016/j.ejc.2017.12.006
Titel: Colourings without monochromatic disjoint pairs
Sprache: Englisch
Autor/Autorin: Clemens, Dennis  
Das, Shagnik 
Tran, Tuan 
Erscheinungs­datum: Mai-2018
Quellenangabe: European Journal of Combinatorics (70): 99-124 (2018-05)
Zusammenfassung (englisch): 
The typical extremal problem asks how large a structure can be without containing a forbidden substructure. The Erdős–Rothschild problem, introduced in 1974 by Erdős and Rothschild in the context of extremal graph theory, is a coloured extension, asking for the maximum number of colourings a structure can have that avoid monochromatic copies of the forbidden substructure. The celebrated Erdős–Ko–Rado theorem is a fundamental result in extremal set theory, bounding the size of set families without a pair of disjoint sets, and has since been extended to several other discrete settings. The Erdős–Rothschild extensions of these theorems have also been studied in recent years, most notably by Hoppen, Koyakayawa and Lefmann for set families, and Hoppen, Lefmann and Odermann for vector spaces. In this paper we present a unified approach to the Erdős–Rothschild problem for intersecting structures, which allows us to extend the previous results, often with sharp bounds on the size of the ground set in terms of the other parameters. In many cases we also characterise which families of vector spaces asymptotically maximise the number of Erdős–Rothschild colourings, thus addressing a conjecture of Hoppen, Lefmann and Odermann.
URI: http://hdl.handle.net/11420/2947
ISSN: 0195-6698
Zeitschrift: European journal of combinatorics 
Institut: Mathematik E-10 
Dokumenttyp: Artikel/Aufsatz
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige

Seitenansichten

129
Letzte Woche
1
Letzten Monat
1
checked on 04.10.2022

SCOPUSTM   
Zitate

6
Letzte Woche
0
Letzten Monat
0
checked on 30.06.2022

Google ScholarTM

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.