Publisher DOI: 10.1016/j.compmedimag.2019.06.001
Title: Motion estimation and correction in cardiac CT angiography images using convolutional neural networks
Language: English
Authors: Lossau, Tanja 
Nickisch, Hannes 
Wissel, Tobias 
Bippus, Rolf 
Schmitt, Holger 
Morlock, Michael 
Grass, Michael 
Issue Date: Sep-2019
Source: Computerized Medical Imaging and Graphics (76): 101640 (2019-09)
Journal or Series Name: Computerized medical imaging and graphics 
Abstract (english): Cardiac motion artifacts frequently reduce the interpretability of coronary computed tomography angiography (CCTA) images and potentially lead to misinterpretations or preclude the diagnosis of coronary artery disease (CAD). In this paper, a novel motion compensation approach dealing with Coronary Motion estimation by Patch Analysis in CT data (CoMPACT) is presented. First, the required data for supervised learning is generated by the Coronary Motion Forward Artifact model for CT data (CoMoFACT) which introduces simulated motion to 19 artifact-free clinical CT cases with step-and-shoot acquisition protocol. Second, convolutional neural networks (CNNs) are trained to estimate underlying 2D motion vectors from 2.5D image patches based on the coronary artifact appearance. In a phantom study with computer-simulated vessels, CNNs predict the motion direction and the motion magnitude with average test accuracies of 13.37°±1.21° and 0.77 ± 0.09 mm, respectively. On clinical data with simulated motion, average test accuracies of 34.85°±2.09° and 1.86 ± 0.11 mm are achieved, whereby the precision of the motion direction prediction increases with the motion magnitude. The trained CNNs are integrated into an iterative motion compensation pipeline which includes distance-weighted motion vector extrapolation. Alternating motion estimation and compensation in twelve clinical cases with real cardiac motion artifacts leads to significantly reduced artifact levels, especially in image data with severe artifacts. In four observer studies, mean artifact levels of 3.08 ± 0.24 without MC and 2.28 ± 0.29 with CoMPACT MC are rated in a five point Likert scale.
ISSN: 0895-6111
Institute: Biomechanik M-3 
Type: (wissenschaftlicher) Artikel
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

Last Week
Last month
checked on Oct 21, 2020

Google ScholarTM


Add Files to Item

Note about this record


Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.